
Sketch of Lecture 13 Wed, 2/7/2024

The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition
encodes the steps of Gram�Schmidt.

(QR decomposition) Every m�n matrix A of rank n can be decomposed as A=QR, where

� Q has orthonormal columns, (m�n)

� R is upper triangular and invertible. (n�n)

How to find Q and R?

� Gram�Schmidt orthonormalization on (columns of) A, to get (columns of) Q

� R=QTA

Why? If A=QR, then QTA=QTQR which simplifies to R=QTA (since QTQ= I).

The decomposition A=QR is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram�Schmidt).
Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram�Schmidt.
Variations. We can also arrange things so that Q is an m � m orthogonal matrix (this means Q is square
and has orthonormal columns) and R a m� n upper triangular matrix. This is a tiny bit more work (and not
required for many applications): we need to complement �our� Q with additional orthonormal columns and add
corresponding zero rows to R. For square matrices this makes no difference.

Example 72. Determine the QR decomposition of A=
24 1 1
1 ¡1
1 1

35.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors (they need to be normalized!) as the columns of Q.

We already did Gram�Schmidt in Example 70: from that work, we have Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775.
Hence, R=QTA=

"
1/ 3
p

1/ 3
p

1/ 3
p

1/ 6
p

¡2/ 6
p

1/ 6
p

#24 1 1
1 ¡1
1 1

35=" 3
p

1/ 3
p

0 4/ 6
p

#
.

Comment. The entries of R have actually all been computed during Gram�Schmidt, so that, if we pay attention,
we could immediately write down R (no extra work required). Looking back at Example 70, can you see this?

Check. Indeed, QR=

2664 1/ 3
p

1/ 6
p

1/ 3
p

¡2/ 6
p

1/ 3
p

1/ 6
p

3775" 3
p

1/ 3
p

0 4/ 6
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=

24 1 1
1 ¡1
1 1

35 equals A.
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Example 73. Using Gram�Schmidt, find an orthogonal basis for W = span

8<:
266664
0
3
0
0

377775;
266664
2
1
0
0

377775;
266664
1
1
1
1

377775
9=;.

Solution. We begin with the (not orthogonal) basis w1=

266664
0
3
0
0

377775, w2=

266664
2
1
0
0

377775, w3=

266664
1
1
1
1

377775.
We then construct an orthogonal basis q1; q2; q3:

� q1=w1=

266664
0
3
0
0

377775

� q2=w2¡
�
projection of
w2 onto q1

�
=

266664
2
1
0
0

377775¡ 3

9

266664
0
3
0
0

377775=
266664
2
0
0
0

377775

� q3=w3¡
�
projection of w3

onto spanfq1; q2g

�
=w3¡

�
projection of
w3 onto q1

�
¡
�
projection of
w3 onto q2

�
=

266664
1
1
1
1

377775¡ 3

9

266664
0
3
0
0

377775¡ 2

4

266664
2
0
0
0

377775=
266664
0
0
1
1

377775
Make sure you understand how q3 was designed to be orthogonal to both q1 and q2!
Also note that breaking up the projection onto spanfq1; q2g into the projections onto q1 and q2 is only
possible because q1 and q2 are orthogonal.

Hence,

266664
0
3
0
0

377775;
266664
2
0
0
0

377775;
266664
0
0
1
1

377775 is an orthogonal basis of W .

Important. Normalizing, we obtain an orthonormal basis:

266664
0
1
0
0

377775;
266664
1
0
0
0

377775; 1

2
p

266664
0
0
1
1

377775.

Example 74. Determine the QR decomposition of A=

266664
0 2 1
3 1 1
0 0 1
0 0 1

377775.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors as the columns of Q.

We already did Gram�Schmidt in Example 73: from that work, we have Q=

26666664
0 1 0
1 0 0

0 0 1/ 2
p

0 0 1/ 2
p

37777775.
Hence, R=QTA=

2664 0 1 0 0
1 0 0 0

0 0 1/ 2
p

1/ 2
p

3775
266664
0 2 1
3 1 1
0 0 1
0 0 1

377775=
2664 3 1 1
0 2 1

0 0 2
p

3775.
Comment. As commented earlier, the entries of R have actually all been computed during Gram�Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 73, can you see this?
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Letting Sage do the work for us.

Sage] A = matrix(QQbar, [[0,2,1],[3,1,1],[0,0,1],[0,0,1]])

Sage] A.QR(full=false)0BBBB@
266664
0 1 0
1 0 0
0 0 0.7071067811865475?
0 0 0.7071067811865475?

377775;
24 3 1 1
0 2 1
0 0 1.414213562373095?

35
1CCCCA

Comment. Can you figure out what happens if you omit the full=false? Check out the comment under
Variations in the statement of the QR decomposition. On the other hand, the QQbar is telling Sage to compute
with algebraic numbers (instead of just rational numbers); if omitted, it would complain that square roots are
not available

Example 75. (extra) Determine the QR decomposition of A=
24 1 2 4
0 0 ¡5
0 3 6

35.
Solution. We first apply Gram�Schmidt orthonormalization to the columns of A. For a variation, like a computer,
we normalize after each step (rather than normalize at the end):

� b1=

24 1
0
0

35, so that q1=

24 1
0
0

35.

� b2=

24 2
0
3

35¡
 24 2

0
3

35� q1
!
q1=

24 0
0
3

35, so that q2=

24 0
0
1

35.

� b3=

24 4
¡5
6

35¡
 24 4

¡5
6

35� q1
!
q1¡

 24 4
¡5
6

35� q2
!
q2=

24 0
¡5
0

35, so that q3=

24 0
¡1
0

35.

Therefore, Q=

24 1 0 0
0 0 ¡1
0 1 0

35. Finally, R=QTA=

24 1 0 0
0 0 1
0 ¡1 0

3524 1 2 4
0 0 ¡5
0 3 6

35=
24 1 2 4
0 3 6
0 0 5

35.
In conclusion, we have found the QR decomposition:

24 1 2 4
0 0 ¡5
0 3 6

35
A

=

24 1 0 0
0 0 1
0 ¡1 0

35
Q

24 1 2 4
0 3 6
0 0 5

35
R

Comment. As noted before, we actually could write down R without any additional computation. Indeed, realize
that the second column of R, that is [2; 3; 0]T means that

2nd col of A=2q1+3q2:

Which we already knew from our computation of q2! Also, by construction, we know that the second column
of A is a linear combination of q1 and q2 only, and that q3 enters the story later on. This corresponds to the
fact that R is always upper triangular.

Letting Sage do the work for us.

Sage] A = matrix(QQbar, [[1,2,4], [0,0,-5], [0,3,6]])

Sage] A.QR()0@24 1 0 0
0 0 ¡1
0 1 0

35;
24 1 2 4
0 3 6
0 0 5

351A
Comment. The QQbar is telling Sage to compute with algebraic numbers (instead of just rational numbers); in
general, if omitted, it would complain that square roots are not available (because the matrices Q and R typically
involve square roots). Here, we are lucky that square roots didn't creep in.
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Example 76. (extra) Find the QR decomposition of A=
24 1 1 2
0 0 1
1 0 0

35.

Solution. (final answer only) A=QR with Q=

26666664
1

2
p

1

2
p 0

0 0 1
1

2
p ¡ 1

2
p 0

37777775 and R=
26666664

2
p 1

2
p 2

p

0
1

2
p 2

p

0 0 1

37777775.

Example 77. One practical application of the QR decomposition is solving systems of linear
equations.

Ax= b () QRx= b (now, multiply with QT from the left)

=) Rx=QTb

The last system is triangular and can be solved by back-substitution.
A couple of comments are in order:

� If A is n�n and invertible, then the �=)� is actually a �()�.

� The equation Rx=QTb is always consistent! (Recall that R is invertible.)
Indeed, if A is not n�n or not invertible, then Rx=QTb gives the least squares solutions!

Why? ATAx̂=ATb () (QR)TQR

=RTQTQR

x̂=(QR)Tb () RTRx̂=RTQTb () Rx̂=QTb

[For the last step we need that R is invertible, which is always the case when A is m�n of rank n.]

� So, how does the QR way of solving linear systems compare to our beloved Gaussian elimination (LU)?
It turns out that QR is a little slower than LU but makes up for it in �numerical stability�.
What does that mean? When computing numerically, we use floating point arithmetic and approximate
each number by an expression of the form 0.1234 � 10¡16. A certain (fixed) number of bits is used to
store the part 0.1234 (here, 4 decimal places of accuracy) as well as the exponent ¡16.
Now, here is something terrible that can happen in numerical computations: mathematically, the quantities
x and (x+ 1)¡ 1 are exactly the same. However, numerically, they might not. Take, for instance, x=
0.1234�10¡6. Then, to an accuracy of 4 decimal places, x+1=0.1000�101, so that (x+1)¡1=0.0000.
But x=/ 0. We completely lost all the information about x.
To be numerically stable, an algorithm must avoid issues like that.

x̂ is a least squares solution of Ax= b
() Rx̂=QTb (where A=QR)
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