Review. If $v_1, ..., v_n$ are orthogonal, the orthogonal projection of w onto span $\{v_1, ..., v_n\}$ is

$$\hat{\boldsymbol{w}} = rac{\boldsymbol{w} \cdot \boldsymbol{v}_1}{\boldsymbol{v}_1 \cdot \boldsymbol{v}_1} \boldsymbol{v}_1 + \ldots + rac{\boldsymbol{w} \cdot \boldsymbol{v}_n}{\boldsymbol{v}_n \cdot \boldsymbol{v}_n} \boldsymbol{v}_n.$$

Example 69.

(a) Project
$$\begin{bmatrix} 3\\2\\1 \end{bmatrix}$$
 onto $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix} \right\}$.
(b) Express $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$ in terms of the basis $\begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\-5 \end{bmatrix}$.

Solution.

(a) We note that the vectors \$\begin{bmatrix} 1 \ 2 \ 1 \end{bmatrix}\$, \$\begin{bmatrix} 2 \ -1 \ 0 \end{bmatrix}\$] are orthogonal to each other. Therefore, the projection can be computed as \$\begin{bmatrix} 3 \\ 1 \\ 2 \\ 1 \end{bmatrix}\$, \$\begin{bmatrix} 1 \\ 2 \\

Gram–Schmidt

(Gram-Schmidt orthogonalization)

Given a basis $w_1, w_2, ...$ for W, we produce an orthogonal basis $q_1, q_2, ...$ for W as follows:

•
$$\boldsymbol{q}_1 = \boldsymbol{w}_1$$

•
$$q_2 = w_2 - \begin{pmatrix} \text{projection of} \\ w_2 \text{ onto } q_1 \end{pmatrix}$$

• $q_3 = w_3 - \begin{pmatrix} \text{projection of} \\ w_3 \text{ onto } q_1 \end{pmatrix} - \begin{pmatrix} \text{projection of} \\ w_3 \text{ onto } q_2 \end{pmatrix}$

•
$$q_4 = ...$$

Note. Since q_1, q_2 are orthogonal, $\begin{pmatrix} \text{projection of} \\ \boldsymbol{w}_3 \text{ onto span}\{\boldsymbol{q}_1, \boldsymbol{q}_2\} \end{pmatrix} = \begin{pmatrix} \text{projection of} \\ \boldsymbol{w}_3 \text{ onto } \boldsymbol{q}_1 \end{pmatrix} + \begin{pmatrix} \text{projection of} \\ \boldsymbol{w}_3 \text{ onto } \boldsymbol{q}_2 \end{pmatrix}$.

Important comment. When working numerically on a computer it actually saves time to compute an orthonormal basis $q_1, q_2, ...$ by the same approach but always normalizing each q_i along the way. The reason this saves time is that now the projections onto q_i only require a single dot product (instead of two). This is called **Gram**–**Schmidt orthonormalization**. When working by hand, it is usually simpler to wait until the end to normalize (so as to avoid working with square roots).

Note. When normalizing, the orthonormal basis $q_1, q_2, ...$ is the unique one (up to \pm signs) with the property that span{ $q_1, q_2, ..., q_k$ } = span{ $w_1, w_2, ..., w_k$ } for all k = 1, 2, ...

Example 70. Using Gram–Schmidt, find an orthogonal basis for $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\1 \end{bmatrix} \right\}$.

Solution. We already have the basis $\boldsymbol{w}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\boldsymbol{w}_2 = \begin{bmatrix} 1\\-1\\1 \end{bmatrix}$ for W. However, that basis is not orthogonal. We can construct an orthogonal basis $\boldsymbol{q}_1, \boldsymbol{q}_2$ for W as follows:

- $\boldsymbol{q}_1 = \boldsymbol{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$
- $\boldsymbol{q}_2 = \boldsymbol{w}_2 \begin{pmatrix} \text{projection of} \\ \boldsymbol{w}_2 \text{ onto } \boldsymbol{q}_1 \end{pmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$

Note. q_2 is the error of the projection of w_2 onto q_1 . This guarantees that it is orthogonal to q_1 . On the other hand, since q_2 is a combination of w_2 and q_1 , we know that q_2 actually is in W.

We have thus found the orthogonal basis $\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \frac{2}{3} \begin{bmatrix} 1\\-2\\1 \end{bmatrix}$ for W (if we like, we can, of course, drop that $\frac{2}{3}$). Important comment. By normalizing, we get an orthonormal basis for W: $\frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\-2\\1 \end{bmatrix}$.

Practical comment. When implementing Gram–Schmidt on a computer, it is beneficial (slightly less work) to normalize each q_i during the Gram–Schmidt process. This typically introduces square roots, which is why normalizing at the end is usually preferable when working by hand.

Comment. There are, of course, many orthogonal bases q_1, q_2 for W. Up to the length of the vectors, ours is the unique one with the property that $\operatorname{span}\{q_1\} = \operatorname{span}\{w_1\}$ and $\operatorname{span}\{q_1, q_2\} = \operatorname{span}\{w_1, w_2\}$.

A matrix Q has orthonormal columns $\iff Q^T Q = I$

Why? Let $q_1, q_2, ...$ be the columns of Q. By the way matrix multiplication works, the entries of $Q^T Q$ are dot products of these columns:

 $\begin{bmatrix} - & \boldsymbol{q}_1^T & - \\ - & \boldsymbol{q}_2^T & - \\ \vdots & \end{bmatrix} \begin{bmatrix} | & | & | \\ \boldsymbol{q}_1 & \boldsymbol{q}_2 & \cdots \\ | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \ddots \end{bmatrix}$

Hence, $Q^T Q = I$ if and only if $q_i^T q_j = 0$ (that is, the columns are orthogonal), for $i \neq j$, and $q_i^T q_i = 1$ (that is, the columns are normalized).

Example 71. $Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{6} \\ 1/\sqrt{3} & -2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{6} \end{bmatrix}$ obtained from Example 70 satisfies $Q^T Q = I$.