More on orthogonality

Example 54. (review) Find the least squares solution to $A \boldsymbol{x}=\boldsymbol{b}$, where

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right]
$$

Solution. First, $A^{T} A=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}17 & 1 \\ 1 & 5\end{array}\right]$ and $A^{T} \boldsymbol{b}=\left[\begin{array}{ccc}4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]=\left[\begin{array}{l}19 \\ 11\end{array}\right]$.
Hence, the normal equations $A^{T} A \hat{\boldsymbol{x}}=A^{T} \boldsymbol{b}$ take the form $\left[\begin{array}{cc}17 & 1 \\ 1 & 5\end{array}\right] \hat{\boldsymbol{x}}=\left[\begin{array}{l}19 \\ 11\end{array}\right]$. Solving, we find $\hat{\boldsymbol{x}}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Check. The error $\boldsymbol{A} \hat{\boldsymbol{x}}-\boldsymbol{b}=\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right]$ is indeed orthogonal to $\operatorname{col}(A)$. Because $\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right] \cdot\left[\begin{array}{c}4 \\ 0 \\ 1\end{array}\right]=0$ and $\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 2 \\ 1\end{array}\right]=0$.

Orthogonal projections

The (orthogonal) projection \hat{b} of a vector b onto a subspace W is the vector in W closest to b. We can compute \hat{b} as follows:

- Write $W=\operatorname{col}(A)$ for some matrix A.
- Then $\hat{\boldsymbol{b}}=A \hat{\boldsymbol{x}}$ where $\hat{\boldsymbol{x}}$ is a least squares solution to $A \boldsymbol{x}=\boldsymbol{b}$. (i.e. $\hat{\boldsymbol{x}}$ solves $A^{T} A \hat{\boldsymbol{x}}=A^{T} \boldsymbol{b}$)

Why? Why is $A \hat{\boldsymbol{x}}$ the projection of \boldsymbol{b} onto $\operatorname{col}(A)$?
Because, if $\hat{\boldsymbol{x}}$ is a least squares solution then $A \hat{\boldsymbol{x}}-\boldsymbol{b}$ is as small as possible (and any element in $\operatorname{col}(A)$ is of the form $A \boldsymbol{x}$ for some \boldsymbol{x}).

Note. This is a recipe for computing any orthogonal projection! That's because every subspace W can be written as $\operatorname{col}(A)$ for some choice of the matrix A (take, for instance, A so that its columns are a basis for W).
Assuming $A^{T} A$ is invertible (which, as discussed in the lemma below, is automatically the case if the columns of A are independent), we have $\hat{\boldsymbol{x}}=\left(A^{T} A\right)^{-1} A^{T} \boldsymbol{b}$ and hence:
(projection matrix) The projection \hat{b} of b onto $\operatorname{col}(A)$ is

$$
\hat{\boldsymbol{b}}=\underbrace{A\left(A^{T} A\right)^{-1} A^{T}}_{P} \boldsymbol{b}
$$

The matrix $P=A\left(A^{T} A\right)^{-1} A^{T}$ is the projection matrix for projecting onto $\operatorname{col}(A)$.

Example 55.

(a) What is the orthogonal projection of $\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]$ onto $W=\operatorname{span}\left\{\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$?
(b) What is the matrix P for projecting onto $W=\operatorname{span}\left\{\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$?
(c) (once more) Using P, what is the orthogonal projection of $\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]$ onto W ?
(d) Using P, what is the orthogonal projection of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ onto W ?

Solution.

(a) In other words, what is the orthogonal projection of $\boldsymbol{b}=\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]$ onto $\operatorname{col}(A)$ with $A=\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]$.

In Example 54, we found that the system $A \boldsymbol{x}=\boldsymbol{b}$ has the least squares solution $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
The projection $\hat{\boldsymbol{b}}$ of \boldsymbol{b} onto $\operatorname{col}(A)$ thus is $A \hat{\boldsymbol{x}}=\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=1\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]+2\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 4 \\ 3\end{array}\right]$.
Check. The error $\hat{\boldsymbol{b}}-\boldsymbol{b}=\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right]$ needs to be orthogonal to $\operatorname{col}(A)$. Indeed: $\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right] \cdot\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]=0$ and $\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right] \cdot\left[\begin{array}{c}0 \\ 2 \\ 1\end{array}\right]=0$.
(b) Note that $W=\operatorname{col}(A)$ for $A=\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]$ and that $A^{T} A=\left[\begin{array}{cc}17 & 1 \\ 1 & 5\end{array}\right]$. Thus $\left(A^{T} A\right)^{-1}=\frac{1}{84}\left[\begin{array}{cc}5 & -1 \\ -1 & 17\end{array}\right]$.

$$
P=A\left(A^{T} A\right)^{-1} A^{T}=\frac{1}{84}\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
5 & -1 \\
-1 & 17
\end{array}\right]\left[\begin{array}{lll}
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right]=\frac{1}{21}\left[\begin{array}{ccc}
20 & -2 & 4 \\
-2 & 17 & 8 \\
4 & 8 & 5
\end{array}\right]
$$

(c) The orthogonal projection of $\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]$ onto W is $P\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]=\frac{1}{21}\left[\begin{array}{ccc}20 & -2 & 4 \\ -2 & 17 & 8 \\ 4 & 8 & 5\end{array}\right]\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]=\frac{1}{21}\left[\begin{array}{l}84 \\ 84 \\ 63\end{array}\right]=\left[\begin{array}{l}4 \\ 4 \\ 3\end{array}\right]$. Note. Of course, that agrees with what our computations in the first part. Note that computing P is more work than what we did in in the first part. However, after having computed P once, we can easily project many vectors onto W.
(d) The orthogonal projection of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ onto W is $P\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\frac{1}{21}\left[\begin{array}{ccc}20 & -2 & 4 \\ -2 & 17 & 8 \\ 4 & 8 & 5\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\frac{1}{21}\left[\begin{array}{c}20 \\ -2 \\ 4\end{array}\right]$. Check. The error $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]-\frac{1}{21}\left[\begin{array}{c}20 \\ -2 \\ 4\end{array}\right]=\frac{1}{21}\left[\begin{array}{c}1 \\ 2 \\ -4\end{array}\right]$ is indeed orthogonal to both $\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]$.

Example 56. (extra)

(a) What is the matrix P for projecting onto $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$?
(b) Using the projection matrix, project $\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$ onto $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$.

Solution.
(a) Choosing $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & 1\end{array}\right]$, the projection matrix P is $A\left(A^{T} A\right)^{-1} A^{T}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]^{-1}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]$ $=\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & 1\end{array}\right] \frac{1}{8}\left[\begin{array}{cc}3 & -1 \\ -1 & 3\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]=\frac{1}{8}\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 4 & 2 \\ 2 & -4 & 2\end{array}\right]=\frac{1}{2}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]$.
Comment. We can choose A in any way such that its columns are a basis for W. The final projection matrix will always be the same.
(b) The projection is $\frac{1}{2}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}5 \\ 6 \\ 5\end{array}\right]$.

Check. The error $\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}5 \\ 6 \\ 5\end{array}\right]=\left[\begin{array}{c}-1 / 2 \\ 0 \\ 1 / 2\end{array}\right]$ is indeed orthogonal to W.

Example 57. (extra)

(a) What is the orthogonal projection of $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ onto $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\}$?
(b) What is the orthogonal projection of $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ onto $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$?

Solution. (final answer only) The projections are $\left(\frac{11}{6}, \frac{1}{3}, \frac{7}{6}\right)^{T}$ and $\left(\frac{3}{2}, 0, \frac{3}{2}\right)^{T}$.

Lemma 58. If the columns of a matrix A are independent, then $A^{T} A$ is invertible.
Proof. Assume $A^{T} A$ is not invertible, so that $A^{T} A \boldsymbol{x}=\mathbf{0}$ for some $\boldsymbol{x} \neq \mathbf{0}$. Multiply both sides with \boldsymbol{x}^{T} to get

$$
\boldsymbol{x}^{T} A^{T} A \boldsymbol{x}=(A \boldsymbol{x})^{T} A \boldsymbol{x}=\|A \boldsymbol{x}\|^{2}=0
$$

which implies that $A \boldsymbol{x}=0$. Since the columns of A are independent, this shows that $\boldsymbol{x}=\mathbf{0}$. A contradiction!

Example 59. If P is a projection matrix, then what is P^{2} ?
For instance. For P as in Example 56, $P^{2}=\frac{1}{4}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]^{2}=\frac{1}{2}\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]=P$.

Solution. Can you see why it is always true that $P^{2}=P$?
[Recall that P projects a vector onto a space W (actually, $W=\operatorname{col}(P)$). Hence P^{2} takes a vector \boldsymbol{b}, projects it onto W to get $\hat{\boldsymbol{b}}$, and then projects $\hat{\boldsymbol{b}}$ onto W again. But the projection of $\hat{\boldsymbol{b}}$ onto W is just $\hat{\boldsymbol{b}}$ (why?!), so that P^{2} always has the exact same effect as P. Therefore, $P^{2}=P$.]

Example 60. True or false? If P is the matrix for projecting onto W, then $W=\operatorname{col}(P)$.
Solution. True!
Why? The columns of P are the projections of the standard basis vectors and hence in W. On the other hand, for any vector \boldsymbol{w} in W, we have $P \boldsymbol{w}=\boldsymbol{w}$ so that \boldsymbol{w} is a combination of the columns of P.
[This may take several readings to digest but do read (or ask) until it makes sense!]

In particular. $\operatorname{rank}(P)=\operatorname{dim} W$ (because, for any matrix, $\operatorname{rank}(A)=\operatorname{dim} \operatorname{col}(A)$)

