Example 23. (review) If $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$, then its transpose is $A^{T}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$.
Recall that $(A B)^{T}=B^{T} A^{T}$. This reflects the fact that, in the column-centric versus the row-centric interpretation of matrix multiplication, the order of the matrices is reversed.
Comment. When working with complex numbers, the fundamental role is not played by the transpose but by the conjugate transpose instead (we'll see that in our discussion of orthogonality): $A^{*}=\overline{A^{T}}$.
For instance, if $A=\left[\begin{array}{cc}1-3 i & 5 i \\ 2+i & 3\end{array}\right]$, then $A^{*}=\left[\begin{array}{cc}1+3 i & 2-i \\ -5 i & 3\end{array}\right]$.

Orthogonality

The inner product and distances

Definition 24. The inner product (or dot product) of $\boldsymbol{v}, \boldsymbol{w}$ in \mathbb{R}^{n} :

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{v}^{T} \boldsymbol{w}=v_{1} w_{1}+\ldots+v_{n} w_{n} .
$$

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity and distributivity.
In addition: $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}$.

Example 25. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \cdot\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]=2-2+12=12$

Definition 26.

- The norm (or length) of a vector v in \mathbb{R}^{n} is

$$
\|\boldsymbol{v}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}=\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}}
$$

- The distance between points \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^{n} is

$$
\operatorname{dist}(\boldsymbol{v}, \boldsymbol{w})=\|\boldsymbol{v}-\boldsymbol{w}\|
$$

Example 27. For instance, in $\mathbb{R}^{2}, \operatorname{dist}\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]\right)=\left\|\left[\begin{array}{l}x_{1}-x_{2} \\ y_{1}-y_{2}\end{array}\right]\right\|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.
Example 28. Write $\|\boldsymbol{v}-\boldsymbol{w}\|^{2}$ as a dot product, and multiply it out.
Solution. $\|\boldsymbol{v}-\boldsymbol{w}\|^{2}=(\boldsymbol{v}-\boldsymbol{w}) \cdot(\boldsymbol{v}-\boldsymbol{w})=\boldsymbol{v} \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{w}-\boldsymbol{w} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w}=\|\boldsymbol{v}\|^{2}-2 \boldsymbol{v} \cdot \boldsymbol{w}+\|\boldsymbol{w}\|^{2}$
Comment. This is a vector version of $(x-y)^{2}=x^{2}-2 x y+y^{2}$.
The reason we were careful and first wrote $-\boldsymbol{v} \cdot \boldsymbol{w}-\boldsymbol{w} \cdot \boldsymbol{v}$ before simplifying it to $-2 \boldsymbol{v} \cdot \boldsymbol{w}$ is that we should not take rules such as $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}$ for granted. For instance, for the cross product $\boldsymbol{v} \times \boldsymbol{w}$, that you may have seen in Calculus, we have $\boldsymbol{v} \times \boldsymbol{w} \neq \boldsymbol{w} \times \boldsymbol{v}$ (instead, $\boldsymbol{v} \times \boldsymbol{w}=-\boldsymbol{w} \times \boldsymbol{v}$).

Orthogonal vectors

Definition 29. \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^{n} are orthogonal if

$$
\boldsymbol{v} \cdot \boldsymbol{w}=0
$$

Why? How is this related to our understanding of right angles?

Pythagoras!

\boldsymbol{v} and \boldsymbol{w} are orthogonal

$$
\Longleftrightarrow\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}=\underbrace{\|\boldsymbol{v}-\boldsymbol{w}\|^{2}}_{\begin{array}{c}
=\|\boldsymbol{v}\|^{2}-2 \boldsymbol{v} \cdot \boldsymbol{w}+\|\boldsymbol{w}\|^{2} \\
(\text { by previous example) }
\end{array}}
$$

$\Longleftrightarrow-2 \boldsymbol{v} \cdot \boldsymbol{w}=0$
$\Longleftrightarrow \boldsymbol{v} \cdot \boldsymbol{w}=0$

Definition 30. We say that two subspaces V and W of \mathbb{R}^{n} are orthogonal if and only if every vector in V is orthogonal to every vector in W.
The orthogonal complement of V is the space V^{\perp} of all vectors that are orthogonal to V.
Exercise. Show that the orthogonal complement is indeed a vector space. Alternatively, this follows from our discussion in the next example which leads to Theorem 32. Namely, every space V can be written as $V=\operatorname{col}(A)$ for a suitable matrix A (for instance, we can choose the columns of A to be basis vectors of V). It then follows that $V^{\perp}=\operatorname{null}\left(A^{T}\right)$ (which is clearly a space).

Example 31. Determine a basis for the orthogonal complement of $V=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]\right\}$.
Solution. The orthogonal complement V^{\perp} consists of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ that are orthogonal to $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$.
Using the dot product, this means we must have $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$ as well as $\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=0$.
Note that this is equivalent to the equations $1 x_{1}+2 x_{2}+1 x_{3}=0$ and $3 x_{1}+1 x_{2}+2 x_{3}=0$.
In matrix-vector form, these two equations combine to $\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
This is the same as saying that $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ has to be in $\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]\right)$. This means that $V^{\perp}=\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]\right)$.
[Note that we have done no computations up to this point! Instead, we have derived Theorem 32 below.]
We compute (fill in the work!) that $V^{\perp}=\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]\right) \stackrel{\operatorname{RREF}}{=} \operatorname{null}\left(\left[\begin{array}{lll}1 & 0 & 3 / 5 \\ 0 & 1 & 1 / 5\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{c}-3 / 5 \\ -1 / 5 \\ 1\end{array}\right]\right\}$.

Check. $\left[\begin{array}{c}-3 / 5 \\ -1 / 5 \\ 1\end{array}\right]$ is indeed orthogonal to both $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$.
Note. If $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is orthogonal to both basis vectors $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$, then it is orthogonal to every vector in V.
Indeed, vectors in V are of the form $\boldsymbol{v}=a\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]+b\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$ and we have $\boldsymbol{v} \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\underbrace{a\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]}_{=0}+b \underbrace{\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]}_{=0}=0$.
Just to make sure. Why is it geometrically clear that the orthogonal complement of V is 1-dimensional?

The following theorem follows by the same reasoning that we used in the previous example.
In that example, we started with $V=\operatorname{col}\left(\left[\begin{array}{ll}1 & 3 \\ 2 & 1 \\ 1 & 2\end{array}\right]\right)$ and found that $V^{\perp}=\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]\right)$.
Theorem 32. If $V=\operatorname{col}(A)$, then $V^{\perp}=\operatorname{null}\left(A^{T}\right)$.
In particular, if V is a subspace of \mathbb{R}^{n} with $\operatorname{dim}(V)=r$, then $\operatorname{dim}\left(V^{\perp}\right)=n-r$.
For short. $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{T}\right)$
Note that the second part can be written as $\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=n$.
To see that this is true, suppose we choose the columns of A to be a basis of V. If V is a subspace of \mathbb{R}^{n} with $\operatorname{dim}(V)=r$, then A is a $r \times n$ matrix with r pivot columns. Correspondingly, A^{T} is a $n \times r$ matrix with r pivot rows. Since $n \geqslant r$ there are $n-r$ free variables when computing a basis for null $\left(A^{T}\right)$. Hence, $\operatorname{dim}\left(V^{\perp}\right)=n-r$.

Example 33. Suppose that V is spanned by 3 linearly independent vectors in \mathbb{R}^{5}. Determine the dimension of V and its orthogonal complement V^{\perp}.
Solution. This means that $\operatorname{dim} V=3$. By Theorem 32, we have $\operatorname{dim} V^{\perp}=5-3=2$.

Example 34. Determine a basis for the orthogonal complement of (the span of) $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
Solution. Here, $V=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$ and we are looking for the orthogonal complement V^{\perp}.
Since $V=\operatorname{col}\left(\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right)$, it follows from Theorem 32 that $V^{\perp}=\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\right)$.
Computing a basis for null([$\left.\left.\begin{array}{lll}1 & 2 & 1\end{array}\right]\right)$ is easy since $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$ is already in RREF.
Note that the general solution to $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right] \boldsymbol{x}=0$ is $\left[\begin{array}{c}-2 s-t \\ s \\ t\end{array}\right]=s\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
A basis for $V^{\perp}=\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\right)$ therefore is $\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.

Check. We easily check (do it!) that both of these are indeed orthogonal to the original vector $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.

