Example 23. (review) If $A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$, then its transpose is $A^T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

Recall that $(AB)^T = B^T A^T$. This reflects the fact that, in the column-centric versus the row-centric interpretation of matrix multiplication, the order of the matrices is reversed.

Comment. When working with complex numbers, the fundamental role is not played by the transpose but by the **conjugate transpose** instead (we'll see that in our discussion of orthogonality): $A^* = \overline{A^T}$.

For instance, if $A = \begin{bmatrix} 1 - 3i & 5i \\ 2 + i & 3 \end{bmatrix}$, then $A^* = \begin{bmatrix} 1 + 3i & 2 - i \\ -5i & 3 \end{bmatrix}$.

Orthogonality

The inner product and distances

Definition 24. The inner product (or dot product) of v, w in \mathbb{R}^n :

$$\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v}^T \boldsymbol{w} = v_1 w_1 + \ldots + v_n w_n.$$

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity and distributivity.

In addition: $\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{w} \cdot \boldsymbol{v}$.

Example 25.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} = 2 - 2 + 12 = 12$$

Definition 26.

• The **norm** (or **length**) of a vector \boldsymbol{v} in \mathbb{R}^n is

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v}\cdot\boldsymbol{v}} = \sqrt{v_1^2 + \ldots + v_n^2}.$$

• The **distance** between points \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^n is

$$\operatorname{dist}(\boldsymbol{v},\boldsymbol{w}) = \|\boldsymbol{v}-\boldsymbol{w}\|.$$

Example 27. For instance, in \mathbb{R}^2 , dist $\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix}, \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) = \left\|\begin{bmatrix} x_1 - x_2 \\ y_1 - y_2 \end{bmatrix}\right\| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

Example 28. Write $\|\boldsymbol{v} - \boldsymbol{w}\|^2$ as a dot product, and multiply it out.

Solution.
$$\|v - w\|^2 = (v - w) \cdot (v - w) = v \cdot v - v \cdot w - w \cdot v + w \cdot w = \|v\|^2 - 2v \cdot w + \|w\|^2$$

Comment. This is a vector version of $(x - y)^2 = x^2 - 2xy + y^2$.

Armin Straub straub@southalabama.edu

The reason we were careful and first wrote $-\boldsymbol{v} \cdot \boldsymbol{w} - \boldsymbol{w} \cdot \boldsymbol{v}$ before simplifying it to $-2\boldsymbol{v} \cdot \boldsymbol{w}$ is that we should not take rules such as $\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{w} \cdot \boldsymbol{v}$ for granted. For instance, for the cross product $\boldsymbol{v} \times \boldsymbol{w}$, that you may have seen in Calculus, we have $\boldsymbol{v} \times \boldsymbol{w} \neq \boldsymbol{w} \times \boldsymbol{v}$ (instead, $\boldsymbol{v} \times \boldsymbol{w} = -\boldsymbol{w} \times \boldsymbol{v}$).

Definition 29. v and w in \mathbb{R}^n are orthogonal if

 $\boldsymbol{v}\cdot\boldsymbol{w}=0.$

Why? How is this related to our understanding of right angles?

Pythagoras!

```
v and w are orthogonal

\iff \|v\|^2 + \|w\|^2 = \underbrace{\|v - w\|^2}_{(by \text{ previous example})}

\iff -2v \cdot w = 0

\iff v \cdot w = 0
```


Definition 30. We say that two subspaces V and W of \mathbb{R}^n are **orthogonal** if and only if every vector in V is orthogonal to every vector in W.

The orthogonal complement of V is the space V^{\perp} of all vectors that are orthogonal to V.

Exercise. Show that the orthogonal complement is indeed a vector space. Alternatively, this follows from our discussion in the next example which leads to Theorem 32. Namely, every space V can be written as V = col(A) for a suitable matrix A (for instance, we can choose the columns of A to be basis vectors of V). It then follows that $V^{\perp} = null(A^T)$ (which is clearly a space).

Just to make sure. Why is it geometrically clear that the orthogonal complement of V is 1-dimensional?

The following theorem follows by the same reasoning that we used in the previous example.

In that example, we started with $V = \operatorname{col}\left(\begin{bmatrix} 1 & 3\\ 2 & 1\\ 1 & 2 \end{bmatrix}\right)$ and found that $V^{\perp} = \operatorname{null}\left(\begin{bmatrix} 1 & 2 & 1\\ 3 & 1 & 2 \end{bmatrix}\right)$.

Theorem 32. If $V = \operatorname{col}(A)$, then $V^{\perp} = \operatorname{null}(A^T)$. In particular, if V is a subspace of \mathbb{R}^n with $\dim(V) = r$, then $\dim(V^{\perp}) = n - r$.

For short. $\operatorname{col}(A)^{\perp} = \operatorname{null}(A^T)$

Note that the second part can be written as $\dim(V) + \dim(V^{\perp}) = n$.

To see that this is true, suppose we choose the columns of A to be a basis of V. If V is a subspace of \mathbb{R}^n with $\dim(V) = r$, then A is a $r \times n$ matrix with r pivot columns. Correspondingly, A^T is a $n \times r$ matrix with r pivot rows. Since $n \ge r$ there are n-r free variables when computing a basis for $\operatorname{null}(A^T)$. Hence, $\dim(V^{\perp}) = n - r$.

Example 33. Suppose that V is spanned by 3 linearly independent vectors in \mathbb{R}^5 . Determine the dimension of V and its orthogonal complement V^{\perp} .

Solution. This means that dim V = 3. By Theorem 32, we have dim $V^{\perp} = 5 - 3 = 2$.

Example 34. Determine a basis for the orthogonal complement of (the span of) $\begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$.

Solution. Here, $V = \operatorname{span}\left\{\begin{bmatrix} 1\\2\\1 \end{bmatrix}\right\}$ and we are looking for the orthogonal complement V^{\perp} . Since $V = \operatorname{col}\left(\begin{bmatrix} 1\\2\\1 \end{bmatrix}\right)$, it follows from Theorem 32 that $V^{\perp} = \operatorname{null}(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix})$. Computing a basis for $\operatorname{null}(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix})$ is easy since $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ is already in RREF. Note that the general solution to $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ is $\mathbb{R} = 0$ is $\begin{bmatrix} -2s - t\\s\\t \end{bmatrix} = s \begin{bmatrix} -2\\1\\0 \end{bmatrix} + t \begin{bmatrix} -1\\0\\1 \end{bmatrix}$. A basis for $V^{\perp} = \operatorname{null}(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix})$ therefore is $\begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}$.

Check. We easily check (do it!) that both of these are indeed orthogonal to the original vector $\begin{bmatrix} 1\\2 \end{bmatrix}$.