Review: Eigenvalues and eigenvectors

If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ (and $\boldsymbol{x} \neq \mathbf{0}$), then \boldsymbol{x} is an eigenvector of A with eigenvalue λ (just a number).
Note that for the equation $A \boldsymbol{x}=\lambda \boldsymbol{x}$ to make sense, A needs to be a square matrix (i.e. $n \times n$).
Key observation:

$$
\begin{aligned}
& A \boldsymbol{x}=\lambda \boldsymbol{x} \\
\Longleftrightarrow & A \boldsymbol{x}-\lambda \boldsymbol{x}=\mathbf{0} \\
\Longleftrightarrow & (A-\lambda I) \boldsymbol{x}=\mathbf{0}
\end{aligned}
$$

This homogeneous system has a nontrivial solution \boldsymbol{x} if and only if $\operatorname{det}(A-\lambda I)=0$.
To find eigenvectors and eigenvalues of A :
(a) First, find the eigenvalues λ by solving $\operatorname{det}(A-\lambda I)=0$.
$\operatorname{det}(A-\lambda I)$ is a polynomial in λ, called the characteristic polynomial of A.
(b) Then, for each eigenvalue λ, find corresponding eigenvectors by solving $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$.

More precisely, we find a basis of eigenvectors for the λ-eigenspace null $(A-\lambda I)$.
Example 16. $A=\left[\begin{array}{lll}4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3\end{array}\right]$ has one eigenvector that is "easy" to see. Do you see it? Solution. Note that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]=2\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Hence, $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is a 2-eigenvector. Just for contrast. Note that $A\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right] \neq \lambda\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Hence, $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is not an eigenvector.

Suppose that A is $n \times n$ and has independent eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$.
Then A can be diagonalized as $A=P D P^{-1}$, where

- the columns of P are the eigenvectors, and
- the diagonal matrix D has the eigenvalues on the diagonal.

Such a diagonalization is possible if and only if A has enough (independent) eigenvectors.
Comment. If you don't quite recall why these choices result in the diagonalization $A=P D P^{-1}$, note that the diagonalization is equivalent to $A P=P D$.

- Put the eigenvectors $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ as columns into a matrix P.

$$
\begin{aligned}
A \boldsymbol{x}_{i}=\lambda_{i} \boldsymbol{x}_{i} \Longrightarrow A\left[\begin{array}{ccc}
\mid & & \mid \\
x_{1} & \ldots & \boldsymbol{x}_{n} \\
\mid & & 1
\end{array}\right] & =\left[\begin{array}{ccc}
\mid & & \mid \\
\lambda_{1} x_{1} & \ldots & \lambda_{n} \boldsymbol{x}_{n} \\
\mid & & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mid & & \mid \\
\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{n} \\
\mid & & \mid
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
\end{aligned}
$$

- In summary: $A P=P D$

Example 17. Let $A=\left[\begin{array}{lll}4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3\end{array}\right]$.
(a) Find the eigenvalues and bases for the eigenspaces of A.
(b) Diagonalize A. That is, determine matrices P and D such that $A=P D P^{-1}$.

Solution.
(a) By expanding by the second column, we find that the characteristic polynomial $\operatorname{det}(A-\lambda I)$ is

$$
\left|\begin{array}{rrr}
4-\lambda & 0 & 2 \\
2 & 2-\lambda & 2 \\
1 & 0 & 3-\lambda
\end{array}\right|=(2-\lambda)\left|\begin{array}{cc}
4-\lambda & 2 \\
1 & 3-\lambda
\end{array}\right|=(2-\lambda)[(4-\lambda)(3-\lambda)-2]=(2-\lambda)^{2}(5-\lambda) .
$$

Hence, the eigenvalues are $\lambda=2$ (with multiplicity 2) and $\lambda=5$.
Comment. At this point, we know that we will find one eigenvector for $\lambda=5$ (more precisely, the 5 eigenspace definitely has dimension 1). On the other hand, the 2 -eigenspace might have dimension 2 or 1. In order for A to be diagonalizable, the 2-eigenspace must have dimension 2. (Why?!)

- The 5 -eigenspace is null $\left(\left[\begin{array}{rrr}-1 & 0 & 2 \\ 2 & -3 & 2 \\ 1 & 0 & -2\end{array}\right]\right)$. Proceeding as in Example 14, we obtain

$$
\operatorname{null}\left(\left[\begin{array}{rrr}
-1 & 0 & 2 \\
2 & -3 & 2 \\
1 & 0 & -2
\end{array}\right]\right) \stackrel{\text { RREF }}{=} \operatorname{null}\left(\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]\right\}
$$

In other words, the 5 -eigenspace has basis $\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$.

- The 2-eigenspace is null $\left(\left[\begin{array}{lll}2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1\end{array}\right]\right)$. Proceeding as in Example 15, we obtain

$$
\operatorname{null}\left(\left[\begin{array}{lll}
2 & 0 & 2 \\
2 & 0 & 2 \\
1 & 0 & 1
\end{array}\right]\right) \stackrel{\text { RREF }}{=} \operatorname{null}\left(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
$$

In other words, the 2-eigenspace has basis $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
Comment. So, indeed, the 2 -eigenspace has dimension 2. In particular, A is diagonalizable.
(b) A possible choice is $P=\left[\begin{array}{ccc}2 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], D=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$.

Comment. However, many other choices are possible and correct. For instance, the order of the eigenvalues in D doesn't matter (as long as the same order is used for P). Also, for P, the columns can be chosen to be any other set of eigenvectors.

