Review. Recall the Gauss-Jordan method of computing A^{-1}. Starting with the augmented matrix $[A \mid I]$, we do Gaussian elimination until we obtain the RREF, which will be of the form $\left[I \mid A^{-1}\right]$ so that we can read off A^{-1}.
Why does that work? By our discussion, the steps of Gaussian elimination can be expressed by multiplication (on the left) with a matrix B. Only looking at the first part of the augmented matrix, and since the RREF of an invertible matrix is I, we have $B A=I$, which means that we must have $B=A^{-1}$. The other part of the augmented matrix (which is I initially) gets multiplied with $B=A^{-1}$ as well, so that, in the end, it is $B I=A^{-1}$. That's why we can read off A^{-1} !
For instance. To invert $\left[\begin{array}{cc}2 & 1 \\ 4 & -6\end{array}\right]$ using the Gauss-Jordan method, we would proceed as follows:

We conclude that $\left[\begin{array}{cc}2 & 1 \\ 4 & -6\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{3}{8} & \frac{1}{16} \\ \frac{1}{4} & -\frac{1}{8}\end{array}\right]$.
Of course, for 2×2 matrices it is much simpler to use the formula $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Review: Vector spaces, bases, dimension, null spaces

Review.

- Vectors are things that can be added and scaled.
- Hence, given vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$, the most general we can do is form the linear combination $\lambda_{1} \boldsymbol{v}_{1}+\ldots+\lambda_{n} \boldsymbol{v}_{n}$. The set of all these linear combinations is the span of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$, denoted by $\operatorname{span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$.
- Vector spaces are spans.

Equivalently. Vector spaces are sets of vectors so that the result of adding and scaling remains within that set.
Homework. Of course, the latter is a very informal statement. Revisit the formal definition, probably consisting of a list of axioms, and observe how that matches with the above (for instance, several of the axioms are concerned with addition and scaling satisfying the "expected" rules).

- Recall that vectors from a vector space V form a basis of V if and only if
- the vectors span V, and
- the vectors are (linearly) independent.

Equivalently. $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ from V form a basis of V if and only if every vector in V can be expressed as a unique linear combination of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$.
Just checking. Make sure that you can define precisely what it means for vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ to be independent.

- The dimension of a vector space V is the number of vectors in a basis for V.

No matter what basis one chooses for V, it always has the same number of vectors.

Example 12. \mathbb{R}^{3} is the vector space of all vectors with 3 real entries.
\mathbb{R} itself refers to the set of real numbers. We will later also discuss \mathbb{C}, the set of complex numbers.
The standard basis of \mathbb{R}^{3} is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. The dimension of \mathbb{R}^{3} is 3 .
Review. The null space $\operatorname{null}(A)$ of a matrix A consists of those vectors x such that $A x=0$.
Make sure that you see why $\operatorname{null}(A)$ is a vector space. [For instance, if you pick two vectors in $\operatorname{null}(A)$ why is it that the sum of them is in $\operatorname{null}(A)$ again?]

Example 13. What is null (A) if the matrix A is invertible?
Solution. If A is invertible, then $A \boldsymbol{x}=\mathbf{0}$ has the unique solution $\boldsymbol{x}=A^{-1} \mathbf{0}=\mathbf{0}$.
Hence, $\operatorname{null}(A)=\{0\}$ which is the trivial vector space (consisting of only the null vector) and has dimension 0 .
Example 14. Compute a basis for $\operatorname{null}(A)$ where $A=\left[\begin{array}{rrr}-1 & 0 & 2 \\ 2 & -3 & 2 \\ 1 & 0 & -2\end{array}\right]$.
Solution. We perform row operations and obtain

$$
\operatorname{null}\left(\left[\begin{array}{rrr}
-1 & 0 & 2 \\
2 & -3 & 2 \\
1 & 0 & -2
\end{array}\right]\right) \stackrel{\substack{R_{2}+2 R_{1} \Rightarrow R_{2} \\
R_{3}+R_{1} \Rightarrow R_{3}}}{=} \operatorname{null}\left(\left[\begin{array}{rrr}
-1 & 0 & 2 \\
0 & -3 & 6 \\
0 & 0 & 0
\end{array}\right]\right) \stackrel{\substack{-R_{1} \Rightarrow R_{1} \\
-\frac{1}{3} R_{2} \Rightarrow R_{2}}}{=} \operatorname{null}\left(\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\right) .
$$

From the RREF, we can now read off the general solution to $A \boldsymbol{x}=\mathbf{0}$:

- x_{1} and x_{2} are pivot variables. [For each we have an equation expressing it in terms of the other variables; for instance, $x_{1}-2 x_{3}=0$ tells us that $x_{1}=2 x_{3}$.]
- x_{3} is a free variable. [There is no equation forcing a value on x_{3}.]
- Hence, without computation, we see that the general solution is $\left[\begin{array}{c}2 x_{3} \\ 2 x_{3} \\ x_{3}\end{array}\right]$. In other words, a basis is $\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$.
Comment. We are starting with the three equations $-x_{1}+2 x_{3}=0,2 x_{1}-3 x_{2}+2 x_{3}=0, x_{1}-2 x_{3}=0$. Performing row operations on the matrix is the same as combining these equations (with the objective to form simpler equations by eliminating variables).

Example 15. Compute a basis for null $\left(\left[\begin{array}{lll}2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1\end{array}\right]\right)$.
Solution.

$$
\operatorname{null}\left(\left[\begin{array}{lll}
2 & 0 & 2 \\
2 & 0 & 2 \\
1 & 0 & 1
\end{array}\right]\right) \stackrel{\substack{R_{2}-R_{1} \Rightarrow R_{2} \\
R_{3}-\frac{1}{2} R_{1} \Rightarrow R_{3}}}{=} \operatorname{null}\left(\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \stackrel{\frac{1}{2} R_{1} \Rightarrow R_{1}}{=} \operatorname{null}\left(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)
$$

This time, x_{2} and x_{3} are free variables. The general solution is $\left[\begin{array}{c}-x_{3} \\ x_{2} \\ x_{3}\end{array}\right]=x_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
Hence, a basis is $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.

