Homework Set 12

Problem 1

Example 23. Find the best approximation of $f(x)=x^{2}$ on the interval [1,4] using a function of the form $y=a \sqrt{x}$.

Solution. Because we are working with functions on [1, 4], the dot product between two functions is

$$
\langle f(x), g(x)\rangle=\int_{1}^{4} f(t) g(t) \mathrm{d} t
$$

The best approximation is the orthogonal projection of x^{2} onto $\operatorname{span}\{\sqrt{x}\}$, which is

$$
\begin{aligned}
\frac{\left\langle x^{2}, \sqrt{x}\right\rangle}{\langle\sqrt{x}, \sqrt{x}\rangle} \sqrt{x} & =\frac{\int_{1}^{4} t^{2} \cdot \sqrt{t} \mathrm{~d} t}{\int_{1}^{4} \sqrt{t} \cdot \sqrt{t} \mathrm{~d} t} \cdot \sqrt{x}=\frac{\int_{1}^{4} t^{5 / 2} \mathrm{~d} t}{\int_{1}^{4} t \mathrm{~d} t} \cdot \sqrt{x} \\
& =\frac{\left[\frac{1}{7 / 2} t^{7 / 2}\right]_{1}^{4}}{\left[\frac{1}{2} t^{2}\right]_{1}^{4}} \cdot \sqrt{x}=\frac{\frac{2}{7} \cdot 4^{7 / 2}-\frac{2}{7}}{\frac{1}{2} \cdot 4^{2}-\frac{1}{2}} \cdot \sqrt{x}=\frac{\frac{254}{7}}{\frac{15}{2}} \cdot \sqrt{x}=\frac{508}{105} \sqrt{x} .
\end{aligned}
$$

Problem 2

Example 24. Find the best approximation of $f(x)=x^{4}$ on the interval [1,3] using a function of the form $y=a+b x$.

Solution. First, note that this best approximation is the orthogonal projection of x^{4} onto $\operatorname{span}\{1, x\}$. However, this orthogonal projection is not simply the projection onto 1 plus the projection onto x. That's because 1 and x are not orthogonal (as functions on $[1,3]$):

$$
\langle 1, x\rangle=\int_{1}^{3} t \mathrm{~d} t=\left[\frac{1}{2} t^{2}\right]_{1}^{3}=\frac{3^{2}}{2}-\frac{1}{2}=4 \neq 0 .
$$

To find an orthogonal basis for $\operatorname{span}\{1, x\}$, following Gram-Schmidt, we compute

$$
x-\binom{\text { projection of }}{x \text { onto } 1}=x-\frac{\langle x, 1\rangle}{\langle 1,1\rangle} 1=x-\frac{\int_{1}^{3} t \mathrm{~d} t}{\int_{1}^{3} 1 \mathrm{~d} t}=x-\frac{4}{2}=x-2
$$

Hence, $1, x-2$ is an orthogonal basis for $\operatorname{span}\{1, x\}$.
The desired orthogonal projection of x^{4} onto $\operatorname{span}\{1, x\}=\operatorname{span}\{1, x-2\}$ therefore is

$$
\frac{\left\langle x^{4}, 1\right\rangle}{\langle 1,1\rangle} 1+\frac{\left\langle x^{4}, x-2\right\rangle}{\langle x-2, x-2\rangle}(x-2)=\frac{\int_{1}^{3} t^{4} \mathrm{~d} t}{\int_{1}^{3} 1 \mathrm{~d} t}+\frac{\int_{1}^{3} t^{4}(t-2) \mathrm{d} t}{\int_{1}^{3}(t-2)^{2} \mathrm{~d} t}(x-2)
$$

We compute the three new integrals:

$$
\begin{aligned}
\int_{1}^{3} t^{4} \mathrm{~d} t & =\left[\frac{1}{5} t^{5}\right]_{1}^{3}=\frac{3^{5}}{5}-\frac{1}{5}=\frac{242}{5} \\
\int_{1}^{3}(t-2)^{2} \mathrm{~d} t & =\int_{1}^{3}\left(t^{2}-4 t+4\right) \mathrm{d} t=\left[\frac{1}{3} t^{3}-2 t^{2}+4 t\right]_{1}^{3}=3-\frac{7}{3}=\frac{2}{3} \\
\int_{1}^{3} t^{4}(t-2) \mathrm{d} t & =\int_{1}^{3}\left(t^{5}-2 t^{4}\right) \mathrm{d} t=\left[\frac{1}{6} t^{6}-\frac{2}{5} t^{5}\right]_{1}^{3}=\frac{243}{10}-\left(-\frac{7}{30}\right)=\frac{368}{15}
\end{aligned}
$$

Using these values, the best approximation is

$$
\frac{\int_{1}^{3} t^{4} \mathrm{~d} t}{\int_{1}^{3} 1 \mathrm{~d} t}+\frac{\int_{1}^{3} t^{4}(t-2) \mathrm{d} t}{\int_{1}^{3}(t-2)^{2} \mathrm{~d} t}(x-2)=\frac{\frac{242}{5}}{2}+\frac{\frac{368}{15}}{\frac{2}{3}}(x-2)=\frac{121}{5}+\frac{184}{5}(x-2)=\frac{184}{5} x-\frac{247}{5}
$$

