Example 139. Solve the IVP $\mathbf{y}' = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{y}$ with $\mathbf{y}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Solution. Recall that the solution to y' = Ay, $y(0) = y_0$ is $y = e^{At}y_0$.

- We first diagonalize $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - $\circ \quad \left| \begin{array}{c} -\lambda & 1 \\ 1 & -\lambda \end{array} \right| = \lambda^2 1, \text{ so the eigenvalues are } \pm 1.$
 - The 1-eigenspace $\operatorname{null}\left(\left[\begin{array}{cc} -1 & 1\\ 1 & -1 \end{array}\right]\right)$ has basis $\left[\begin{array}{cc} 1\\ 1 \end{array}\right]$.
 - $\circ \quad \text{The } -1\text{-eigenspace } \operatorname{null}\left(\left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right]\right) \text{ has basis } \left[\begin{array}{c} -1 \\ 1 \end{array}\right].$

• Hence,
$$A = PDP^{-1}$$
 with $P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

• Compute the solution $\boldsymbol{y} = e^{At} \boldsymbol{y}_0$:

Check. Indeed, $y_1 = \frac{1}{2}(e^t + e^{-t})$ and $y_2 = \frac{1}{2}(e^t - e^{-t})$ satisfy the system of differential equations $y'_1 = y_2$ and $y'_2 = y_1$ as well as the initial conditions $y_1(0) = 1$, $y_2(0) = 0$.

Comment. You have actually met these functions in Calculus! $y_1 = \cosh(t)$ and $y_2 = \sinh(t)$. Check out the next example for the connection to $\cos(t)$ and $\sin(t)$.

Example 140.

(a) Solve the IVP
$$\boldsymbol{y}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \boldsymbol{y}$$
 with $\boldsymbol{y}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

(b) Show that $\boldsymbol{y} = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$ solves the same IVP. What do you conclude?

Solution.

(a)
$$A = PDP^{-1}$$
 with $P = \begin{bmatrix} i & -i \\ 1 & 1 \end{bmatrix}$, $D = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$.
The autom is therefore exhad by:

The system is therefore solved by:

$$\begin{aligned} \boldsymbol{y}(t) &= Pe^{Dt}P^{-1} \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} i & -i\\1 & 1 \end{bmatrix} \begin{bmatrix} e^{it}\\e^{-it} \end{bmatrix} \frac{1}{2i} \begin{bmatrix} 1 & i\\-1 & i \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} \\ &= \frac{1}{2i} \begin{bmatrix} i & -i\\1 & 1 \end{bmatrix} \begin{bmatrix} e^{it}\\e^{-it} \end{bmatrix} \begin{bmatrix} 1\\-1 \end{bmatrix} = \frac{1}{2i} \begin{bmatrix} i & -i\\1 & 1 \end{bmatrix} \begin{bmatrix} e^{it}\\e^{-it} \end{bmatrix} = \frac{1}{2i} \begin{bmatrix} ie^{it} + ie^{-it}\\e^{it} - e^{-it} \end{bmatrix} \\ &= \frac{1}{2} \begin{bmatrix} e^{it} + e^{-it}\\-ie^{it} + ie^{-it} \end{bmatrix} \end{aligned}$$

(b) Clearly, $\mathbf{y}(0) = \begin{bmatrix} \cos(0) \\ \sin(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. On the other hand, $y'_1 = -\sin(t) = -y_2$ and $y'_2 = \cos(t) = y_1$, so that $\mathbf{y}' = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \mathbf{y}$. Since the solution to the IVP is unique, it follows that $\begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} e^{it} + e^{-it} \\ -ie^{it} + ie^{-it} \end{bmatrix}$. We have just discovered Euler's identity!

Theorem 141. (Euler's identity) $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

Another short proof. Observe that both sides are the (unique) solution to the IVP y' = iy, y(0) = 1.

On lots of T-shirts. In particular, with $x = \pi$, we get $e^{\pi i} = -1$ or $e^{i\pi} + 1 = 0$ (which connects the five fundamental constants).

Rotation matrices

Example 142. Write down a 2×2 matrix Q for rotation by angle θ in the plane.

Comment. Why should we even be able to represent something like rotation by a matrix? Meaning that Qx should be the vector x rotated by θ . Recall from Linear Algebra I that every linear map can be represented by a matrix. Then think about why rotation is a linear map.

Solution. We can determine Q by figuring out $Q\begin{bmatrix} 1\\0 \end{bmatrix}$ (the first column of Q) and $Q\begin{bmatrix} 0\\1 \end{bmatrix}$ (the second column of Q).

Since $Q\begin{bmatrix} 1\\ 0\end{bmatrix} = \begin{bmatrix} \cos\theta\\ \sin\theta \end{bmatrix}$ and $Q\begin{bmatrix} 0\\ 1\end{bmatrix} = \begin{bmatrix} -\sin\theta\\ \cos\theta \end{bmatrix}$, we conclude that $Q = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$.

Comment. Note that we don't need previous knowledge of \cos and \sin . We could have introduced these trig functions on the spot.

Comment. Note that it is geometrically obvious that Q is orthogonal. (Why?)

It is clear that $\left\| \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \right\|^2 = 1$. Noting that $\left\| \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \right\|^2 = \cos^2 \theta + \sin^2 \theta$, we have rediscovered Pythagoras.

Advanced comment. Actually, every orthogonal 2×2 matrix Q with det(Q) = 1 is a rotation by some angle θ . Orthogonal matrices with det(Q) = -1 are reflections.

Example 143. As in the previous example, let Q_{θ} be the 2×2 matrix for rotation by angle θ in the plane. What is $Q_{\alpha}Q_{\beta}$?

Solution. Note that $Q_{\alpha}Q_{\beta}x$ first rotates x by angle β and then by angle α . For geometric reasons, it is obvious that this is the same as if we rotated x by $\alpha + \beta$. It follows that $Q_{\alpha}Q_{\beta} = Q_{\alpha+\beta}$.

Comment. This allows us to derive interesting trig identities:

 $Q_{\alpha}Q_{\beta} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{bmatrix} = \begin{bmatrix} \cos\alpha\cos\beta - \sin\alpha\sin\beta & \dots \\ \dots & \dots \end{bmatrix}$ $Q_{\alpha+\beta} = \begin{bmatrix} \cos(\alpha+\beta) & -\sin(\alpha+\beta) \\ \sin(\alpha+\beta) & \cos(\alpha+\beta) \end{bmatrix}$

It follows that $\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$.

Comment. If we set $\beta = \alpha$, this simplifies to $\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1$, the double angle formula that you have probably used countless times in Calculus.

Comment. Similarly, we find an identity for $sin(\alpha + \beta)$. Spell it out!

More on complex numbers

Let's recall some very basic facts about complex numbers:

- Every complex number can be written as z = x + iy with real x, y.
- Here, the imaginary unit *i* is characterized by solving $x^2 = -1$.
 - **Important observation.** The same equation is solved by -i. This means that, algebraically, we cannot distinguish between +i and -i.
- The conjugate of z = x + iy is $\overline{z} = x iy$.

Important comment. Since we cannot algebraically distinguish between $\pm i$, we also cannot distinguish between z and \overline{z} . That's the reason why, in problems involving only real numbers, if a complex number z = x + iy shows up, then its **conjugate** $\overline{z} = x - iy$ has to show up in the same manner. With that in mind, have another look at Example 83.

- The absolute value of the complex number z = x + iy is $|z| = \sqrt{x^2 + y^2} = \sqrt{\overline{z}z}$.
- The norm of the complex vector $\boldsymbol{z} = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$ is $\|\boldsymbol{z}\| = \sqrt{|z_1|^2 + |z_2|^2}$. Note that $\|\boldsymbol{z}\|^2 = \bar{z_1}z_1 + \bar{z_2}z_2 = \bar{\boldsymbol{z}}^T \boldsymbol{z}$.

Definition 144.

- For any matrix A, its conjugate transpose is $A^* = (\bar{A})^T$.
- The **dot product** (inner product) of complex vectors is $v \cdot w = v^* w$.
- A complex $n \times n$ matrix A is **unitary** if $A^*A = I$.

Comment. A^* is also written A^H (or A^{\dagger} in quantum mechanics) and called the Hermitian conjugate.

Comment. For real matrices and vectors, the conjugate transpose is just the ordinary transpose. In particular, the dot product is the same.

Comment. Unitary matrices are the complex version of orthogonal matrices. (A real matrix if unitary if and only if it is orthogonal.)

Example 145. What is the norm of the vector $\begin{bmatrix} 1-i\\ 2+3i \end{bmatrix}$?

Solution. $\left\| \begin{bmatrix} 1-i\\2+3i \end{bmatrix} \right\|^2 = \begin{bmatrix} 1+i&2-3i \end{bmatrix} \begin{bmatrix} 1-i\\2+3i \end{bmatrix} = |1-i|^2 + |2+3i|^2 = 2+13$. Hence, $\left\| \begin{bmatrix} 1-i\\2+3i \end{bmatrix} \right\| = \sqrt{15}$.

Example 146. Determine A^* if $A = \begin{bmatrix} 2 & 1-i \\ 3+2i & i \end{bmatrix}$.

Solution. $A^* = \begin{bmatrix} 2 & 3-2i \\ 1+i & -i \end{bmatrix}$

Example 147. What is $\frac{1}{2+3i}$? Solution. $\frac{1}{2+3i} = \frac{2-3i}{(2+3i)(2-3i)} = \frac{2-3i}{13}$. In general. $\frac{1}{z} = \frac{\bar{z}}{z\bar{z}} = \frac{\bar{z}}{|z|^2}$

Example 148. (extra) We can identify complex numbers x + iy with vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 . Then, what is the geometric effect of multiplying with i?

Solution. Algebraically, the effect of multiplying x + iy with i obviously is i(x + iy) = -y + ix. Since multiplication with i is obviously linear, we can represent it using a 2×2 matrix J acting on vectors $\begin{bmatrix} x \\ y \end{bmatrix}$. $J\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (this is the same as saying $i \cdot 1 = i$) and $J\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ (this is the same as saying $i \cdot i = -1$).

Hence, $J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. This is precisely the rotation matrix for a rotation by 90°.

In other words, multiplication with *i* has the geometric effect of rotating complex numbers by 90°. Comment. The relation $i^2 = -1$ translates to $J^2 = -I$.

Complex numbers as 2 × **2 matrices.** In light of the above, we can express complex numbers x + iy as the 2 × 2 matrix $xI + yJ = \begin{bmatrix} x & -y \\ y & x \end{bmatrix}$. Adding and multiplying these matrices behaves exactly the same way as adding or multiplying the complex numbers directly.

For instance, $(2+3i)(4-i) = 8 + 10i - 3i^2 = 11 + 10i$ versus $\begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 4 & 1 \\ -1 & 4 \end{bmatrix} = \begin{bmatrix} 11 & -10 \\ 10 & 11 \end{bmatrix}$. Likewise for inverses: $\frac{1}{2+3i} = \frac{2-3i}{(2+3i)(2-3i)} = \frac{2-3i}{13}$ versus $\begin{bmatrix} 2 & -3 \\ 3 & 2 \end{bmatrix}^{-1} = \frac{1}{13} \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$