
Sketch of Lecture 27 Fri, 4/3/2020

Example 139. Solve the IVP y 0=
�
0 1
1 0

�
y with y(0)=

�
1
0

�
.

Solution. Recall that the solution to y0=Ay, y(0)= y0 is y= eAty0.

� We first diagonalize A=
�
0 1
1 0

�
.

�
�������� −� 1
1 −�

��������=�2− 1, so the eigenvalues are �1.

� The 1-eigenspace null
��

−1 1
1 −1

��
has basis

�
1
1

�
.

� The −1-eigenspace null
��

1 1
1 1

��
has basis

�
−1
1

�
.

� Hence, A=PDP−1 with P =
�
1 −1
1 1

�
and D=

�
1 0
0 −1

�
.

� Compute the solution y= eAty0:

y= eAty0 = PeDtP−1y0

=

�
1 −1
1 1

�"
et 0

0 e−t

#
=

"
et −e−t

et e−t

#

1
2

�
1 1
−1 1

��
1
0

�
=

1

2

�
1
−1

�
=
1
2

"
et+ e−t

et− e−t

#

Check. Indeed, y1=
1

2
(et+ e−t) and y2=

1

2
(et− e−t) satisfy the system of differential equations y1

0 = y2 and
y2
0 = y1 as well as the initial conditions y1(0)=1, y2(0)=0.

Comment. You have actually met these functions in Calculus! y1= cosh(t) and y2= sinh(t). Check out the
next example for the connection to cos(t) and sin(t).

Example 140.

(a) Solve the IVP y 0=
�
0 −1
1 0

�
y with y(0)=

�
1
0

�
.

(b) Show that y=
�
cos(t)
sin(t)

�
solves the same IVP. What do you conclude?

Solution.

(a) A=PDP−1 with P =
�
i −i
1 1

�
, D=

�
i 0
0 −i

�
.

The system is therefore solved by:

y(t) = PeDtP−1
�
1
0

�
=

�
i −i
1 1

�"
eit

e−it

#
1
2i

�
1 i
−1 i

��
1
0

�
=

1
2i

�
i −i
1 1

�"
eit

e−it

#�
1
−1

�
=
1
2i

�
i −i
1 1

�"
eit

−e−it

#
=
1
2i

"
ieit+ ie−it

eit− e−it

#

=
1
2

"
eit+ e−it

−ieit+ ie−it

#

(b) Clearly, y(0)=
�
cos(0)
sin(0)

�
=

�
1
0

�
. On the other hand, y1

0 =−sin(t)=−y2 and y20 = cos(t)= y1, so that

y 0=
�
0 −1
1 0

�
y. Since the solution to the IVP is unique, it follows that

�
cos(t)
sin(t)

�
=
1

2

"
eit+ e−it

−ieit+ ie−it

#
.

We have just discovered Euler's identity!

Theorem 141. (Euler's identity) ei�= cos(�)+ i sin(�)
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Another short proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)=1.

On lots of T-shirts. In particular, with x = �, we get e�i=−1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Rotation matrices

Example 142. Write down a 2� 2 matrix Q for rotation by angle � in the plane.
Comment. Why should we even be able to represent something like rotation by a matrix? Meaning that Qx
should be the vector x rotated by �. Recall from Linear Algebra I that every linear map can be represented by
a matrix. Then think about why rotation is a linear map.

Solution. We can determine Q by figuring out Q
�
1
0

�
(the first column of Q) and Q

�
0
1

�
(the second column

of Q).

Since Q
�
1
0

�
=

�
cos�
sin�

�
and Q

�
0
1

�
=

�
−sin�
cos�

�
, we conclude that Q=

�
cos� −sin�
sin� cos�

�
.

Comment. Note that we don't need previous knowledge of cos and sin. We could have introduced these trig
functions on the spot.
Comment. Note that it is geometrically obvious that Q is orthogonal. (Why?)

It is clear that
� cos �

sin �

�2=1. Noting that
� cos �

sin �

�2= cos2�+ sin2�, we have rediscovered Pythagoras.

Advanced comment. Actually, every orthogonal 2� 2 matrix Q with det(Q) = 1 is a rotation by some angle
�. Orthogonal matrices with det(Q)=−1 are reflections.

Example 143. As in the previous example, let Q� be the 2� 2 matrix for rotation by angle � in
the plane. What is Q�Q�?

Solution. Note that Q�Q�x first rotates x by angle � and then by angle �. For geometric reasons, it is obvious
that this is the same as if we rotated x by �+ �. It follows that Q�Q�=Q�+�.
Comment. This allows us to derive interesting trig identities:

Q�Q� =

�
cos� −sin�
sin� cos�

��
cos� −sin�
sin� cos�

�
=

�
cos�cos� − sin�sin� :::

::: :::

�
Q�+� =

�
cos(�+ �) −sin(�+ �)
sin(�+ �) cos(�+ �)

�
It follows that cos(�+ �) = cos�cos� − sin�sin�.
Comment. If we set �=�, this simplifies to cos(2�)= cos2�− sin2�=2cos2�− 1, the double angle formula
that you have probably used countless times in Calculus.
Comment. Similarly, we find an identity for sin(�+ �). Spell it out!

More on complex numbers

Let's recall some very basic facts about complex numbers:

� Every complex number can be written as z=x+ iy with real x; y.

� Here, the imaginary unit i is characterized by solving x2=−1.
Important observation. The same equation is solved by −i. This means that, algebraically, we cannot
distinguish between +i and −i.

� The conjugate of z= x+ iy is z�=x− iy.
Important comment. Since we cannot algebraically distinguish between �i, we also cannot distinguish
between z and z�. That's the reason why, in problems involving only real numbers, if a complex number
z=x+ iy shows up, then its conjugate z�=x− iy has to show up in the same manner. With that in
mind, have another look at Example 83.
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� The absolute value of the complex number z= x+ iy is jz j= x2+ y2
p

= z�z
p

.

� The norm of the complex vector z=
�
z1
z2

�
is kzk= jz1j2+ jz2j2

p
.

Note that kzk2= z1� z1+ z2� z2= z�
Tz.

Definition 144.

� For any matrix A, its conjugate transpose is A�=(A�)T .

� The dot product (inner product) of complex vectors is v �w=v�w.

� A complex n�n matrix A is unitary if A�A= I .

Comment. A� is also written AH (or Ay in quantum mechanics) and called the Hermitian conjugate.
Comment. For real matrices and vectors, the conjugate transpose is just the ordinary transpose. In particular,
the dot product is the same.
Comment. Unitary matrices are the complex version of orthogonal matrices. (A real matrix if unitary if and only
if it is orthogonal.)

Example 145. What is the norm of the vector
�
1− i
2+ 3i

�
?

Solution.
� 1− i

2+ 3i

�2= [ 1 + i 2− 3i ]
�
1− i
2+ 3i

�
= j1− ij2+ j2+3ij2=2+ 13. Hence,

� 1− i
2+ 3i

�= 15
p

.

Example 146. Determine A� if A=
�

2 1− i
3+ 2i i

�
.

Solution. A�=
�

2 3− 2i
1+ i −i

�

Example 147. What is 1

2+ 3i
?

Solution. 1

2+ 3i
=

2− 3i
(2+3i)(2− 3i) =

2− 3i
13

.

In general. 1

z
=

z�

z z�
=

z�

jzj2

Example 148. (extra) We can identify complex numbers x+ iy with vectors
�
x
y

�
in R2. Then,

what is the geometric effect of multiplying with i?
Solution. Algebraically, the effect of multiplying x+ iy with i obviously is i(x+ iy)=−y+ ix.

Since multiplication with i is obviously linear, we can represent it using a 2�2 matrix J acting on vectors
�
x
y

�
.

J
�
1
0

�
=

�
0
1

�
(this is the same as saying i � 1= i) and J

�
0
1

�
=

�
−1
0

�
(this is the same as saying i � i=−1).

Hence, J =
�
0 −1
1 0

�
. This is precisely the rotation matrix for a rotation by 90�.

In other words, multiplication with i has the geometric effect of rotating complex numbers by 90�.
Comment. The relation i2=−1 translates to J2=−I.
Complex numbers as 2� 2 matrices. In light of the above, we can express complex numbers x+ iy as the
2 � 2 matrix xI + yJ =

�
x −y
y x

�
. Adding and multiplying these matrices behaves exactly the same way as

adding or multiplying the complex numbers directly.

For instance, (2+3i)(4− i)= 8+ 10i− 3i2= 11+ 10i versus
�
2 −3
3 2

��
4 1
−1 4

�
=

�
11 −10
10 11

�
.

Likewise for inverses: 1

2+3i
=

2− 3i
(2+ 3i)(2− 3i)

=
2− 3i

13 versus
�
2 −3
3 2

�−1
=

1

13

�
2 3
−3 2

�
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