Sketch of Lecture 12 Mon, 2/10/2020

Review. If vq,..., v, are orthogonal, the orthogonal projection of w onto span{wvy,...,v,} is

w - V1 w - Up
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w =

Example 64.

3 1] [ 2
(a) Project [ 2 ] onto W =span [ 2 ,[ ~1 }
1 1

3 [ 1 2 1
(b) Express [ 2 ] in terms of the basis | 2 ],[ -1 ],[ 2 ]
1

|1 0 -5
Solution.
8 ! 4 2
(a) The projection is A 2 +g —1 |. (Each coefficient is obtained as the quotient of two dot products.)
1 0
3 1 2 1
o) | 2 :% 2 +§ 1]+ % 9
1 1 0 -5

\ Gram-Schmidt

(Gram-Schmidt orthogonalization)

Given a basis w1, ws, ... for W, we produce an orthogonal basis q1, qo, ... for W as follows:

® gi=w;

projection of)

¢ quwg—( w9 onto qi

. e — projection of \ [ projection of
q3 = Ws ws onto q; w3 onto qs

® (gyp—...

projection of __ [ projection of projection of
w3 onto span{qi, qg}) _< wg onto qq ) ( w3z onto qo )
Important comment. When working numerically on a computer it actually saves time to compute an orthonormal
basis q1, g2, ... by the same approach but always normalizing each g; along the way. The reason this saves time
is that now the projections onto g; only require a single dot product (instead of two). This is called Gram—
Schmidt orthonormalization. When working by hand, it is usually simpler to wait until the end to normalize
(so as to avoid ).

Note. Since q1, g2 are orthogonal, (

Note. When normalizing, the orthonormal basis q1, qo, ... is the unique one (up to =+ signs) with the property
that span{qi, q2, ..., gx } = span{w1, wa, ..., wi } forall k=1,2, ....
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1 1
Example 65. Using Gram—Schmidt, find an orthogonal basis for W = span [ 1 ],[ —1 ]

1 1
Solution. We already have the basis w1 :{ 1 ], wzz{ -1 ] for W. However, that basis is not orthogonal.
1 1

We can construct an orthogonal basis q1, g2 for W as follows:

1
[ ga=wi=|1
1

R — o — projection of \ 11 1 i _1 24
92 = w2 wo onto q1 ) _1 30 1 -3 _2

Note. g2 is the error of the projection of ws onto g;. This guarantees that it is orthogonal to q;.

On the other hand, since g5 is a combination of ws and g1, we know that g2 actually is in W.

1 1
We have thus found the orthogonal basis [ 1 ], %[ —2 ] for W (if we like, we can, of course, drop that %)
1 1

1 1
.. . 1 1

Important comment. By normalizing, we get an orthonormal basis for W: —| 1 |,—| -2 |.

p y g weg S
Practical comment. When implementing Gram—Schmidt on a computer, it is beneficial (slightly less work)
to normalize each g; during the Gram—Schmidt process. This typically introduces square roots, which is why
normalizing at the end is usually preferable when working by hand.
Comment. There are, of course, many orthogonal bases g1, g for W. Up to the length of the vectors, ours is
the unique one with the property that span{q;} =span{w;} and span{qi, g2} =span{w, wa}.

A matrix  has orthonormal columns +—= QTQ=1

Why? Let g1, go, ... be the columns of Q. By the way matrix multiplication works, the entries of Q7Q are dot
products of these columns:
[ — o — ][ 1 |

{—q%ﬂ—J q q2 - | =

O O =
o= o
=N

Hence, QTQ = I if and only if the dot products qiqu =0 (that is, the columns are orthogonal), for i & j, and
qlq; =1 (that is, the columns are normalized).

[1/v3 1/v6 _ o
Example 66. Q=| 1/,/3 —2/6 | obtained from Example 65 satisfies Q" Q) = 1.
[1/\/3 1//6 J
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| The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition
encodes the steps of Gram—Schmidt.

(QR decomposition) Every m x n matrix A of rank n can be decomposed as A= ) R, where

e () has orthonormal columns, (m xn)

e R is upper triangular and invertible. (n x n)

How to find Q and R?
e  Gram—Schmidt orthonormalization on (columns of) A, to get (columns of) Q

[ ] R: QTA
Why? If A=QR, then QA= Q”Q R which simplifies to R= QT A (since QTQ =1).

The decomposition A = Q R is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram—Schmidt).

Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram—Schmidt.

Variations. We can also arrange things so that @) is an m X m orthogonal matrix and R a m X n upper triangular
matrix. This is a tiny bit more work (and not required for many applications): we need to complement “our”
with additional orthonormal columns and add corresponding zero rows to R. For square matrices this makes no
difference.

11
Example 67. Determine the QR decomposition of A:l 1 -1 }
11

Solution. The first step is Gram—Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors (they need to be normalized!) as the columns of Q.

1/v3 1/v6
We already did Gram—Schmidt in Example 65: from that work, we have Q:{ 1/v/3 —2/46 J

1/vV3 1/6
Hence, R=QTA= 1/v3 1/V3 1/V3 } fl 3/v3 1//3
' 1//6 —2//6 1/6 11 0 4//6 |

Comment. As commented earlier, the entries of R have actually all been computed during Gram—Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 65, can you see this?

[1/v3 1/vE ]
Check. Indeed, QR:[ 1/V3 —2/V6 J{

1 1
3/V3 1/\/3}:[ A } equals A.
1/V3 1/4/6 !

0 a/VvE ||
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