
Sketch of Lecture 12 Mon, 2/10/2020

Review. If v1; :::; vn are orthogonal, the orthogonal projection of w onto spanfv1; :::; vng is

ŵ=
w �v1
v1 �v1

v1+ :::+
w �vn
vn �vn

vn:

Example 64.

(a) Project

24 3
2
1

35 onto W = span

(24 1
2
1

35;
24 2
−1
0

35
)
.

(b) Express

24 3
2
1

35 in terms of the basis

24 1
2
1

35;
24 2
−1
0

35;
24 1

2
−5

35.
Solution.

(a) The projection is
8
6

24 1
2
1

35+ 4
5

24 2
−1
0

35. (Each coefficient is obtained as the quotient of two dot products.)

(b)

24 3
2
1

35= 8
6

24 1
2
1

35+ 4
5

24 2
−1
0

35+ 5
30

24 1
2
−5

35

Gram�Schmidt

(Gram�Schmidt orthogonalization)
Given a basis w1;w2; ::: for W , we produce an orthogonal basis q1; q2; ::: for W as follows:

� q1=w1

� q2=w2−
�
projection of
w2 onto q1

�

� q3=w3−
�
projection of
w3 onto q1

�
−
�
projection of
w3 onto q2

�
� q4= :::

Note. Since q1; q2 are orthogonal,
�

projection of
w3 onto spanfq1; q2g

�
=

�
projection of
w3 onto q1

�
+

�
projection of
w3 onto q2

�
.

Important comment. When working numerically on a computer it actually saves time to compute an orthonormal
basis q1; q2; ::: by the same approach but always normalizing each qi along the way. The reason this saves time
is that now the projections onto qi only require a single dot product (instead of two). This is called Gram�
Schmidt orthonormalization. When working by hand, it is usually simpler to wait until the end to normalize
(so as to avoid ).
Note. When normalizing, the orthonormal basis q1; q2; ::: is the unique one (up to � signs) with the property
that spanfq1; q2; :::; qkg= spanfw1;w2; :::;wkg for all k=1; 2; :::.
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Example 65. Using Gram�Schmidt, find an orthogonal basis for W = span

(24 1
1
1

35;
24 1
−1
1

35
)
.

Solution. We already have the basis w1=

24 1
1
1

35, w2=

24 1
−1
1

35 for W . However, that basis is not orthogonal.

We can construct an orthogonal basis q1; q2 for W as follows:

� q1=w1=

24 1
1
1

35

� q2=w2−
�
projection of
w2 onto q1

�
=

24 1
−1
1

35− 1

3

24 1
1
1

35= 1

3

24 2
−4
2

35
Note. q2 is the error of the projection of w2 onto q1. This guarantees that it is orthogonal to q1.
On the other hand, since q2 is a combination of w2 and q1, we know that q2 actually is in W .

We have thus found the orthogonal basis

24 1
1
1

35; 2
3

24 1
−2
1

35 for W (if we like, we can, of course, drop that 2
3
).

Important comment. By normalizing, we get an orthonormal basis for W : 1

3
p

24 1
1
1

35; 1

6
p

24 1
−2
1

35.
Practical comment. When implementing Gram�Schmidt on a computer, it is beneficial (slightly less work)
to normalize each qi during the Gram�Schmidt process. This typically introduces square roots, which is why
normalizing at the end is usually preferable when working by hand.
Comment. There are, of course, many orthogonal bases q1; q2 for W . Up to the length of the vectors, ours is
the unique one with the property that spanfq1g= spanfw1g and spanfq1; q2g= spanfw1;w2g.

A matrix Q has orthonormal columns () QTQ= I

Why? Let q1; q2; ::: be the columns of Q. By the way matrix multiplication works, the entries of QTQ are dot
products of these columns: 2664 −− q1

T −−
−− q2

T −−
���

3775
24 j j
q1 q2 ���
j j

35=
24 1 0 0
0 1 0
0 0 ���

35
Hence, QTQ= I if and only if the dot products qi

Tqj=0 (that is, the columns are orthogonal), for i=/ j, and
qi
Tqi=1 (that is, the columns are normalized).

Example 66. Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

−2/ 6
p

1/ 3
p

1/ 6
p

3775 obtained from Example 65 satisfies QTQ= I .
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The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition
encodes the steps of Gram�Schmidt.

(QR decomposition) Every m�n matrix A of rank n can be decomposed as A=QR, where

� Q has orthonormal columns, (m�n)

� R is upper triangular and invertible. (n�n)

How to find Q and R?

� Gram�Schmidt orthonormalization on (columns of) A, to get (columns of) Q

� R=QTA

Why? If A=QR, then QTA=QTQR which simplifies to R=QTA (since QTQ= I).

The decomposition A=QR is unique if we require the diagonal entries of R to be positive (and this is exactly
what happens when applying Gram�Schmidt).
Practical comment. Actually, no extra work is needed for computing R. All of its entries have been computed
during Gram�Schmidt.
Variations. We can also arrange things so that Q is anm�m orthogonal matrix andR am�n upper triangular
matrix. This is a tiny bit more work (and not required for many applications): we need to complement �our� Q
with additional orthonormal columns and add corresponding zero rows to R. For square matrices this makes no
difference.

Example 67. Determine the QR decomposition of A=

24 1 1
1 −1
1 1

35.
Solution. The first step is Gram�Schmidt orthonormalization on the columns of A. We then use the resulting
orthonormal vectors (they need to be normalized!) as the columns of Q.

We already did Gram�Schmidt in Example 65: from that work, we have Q=

2664 1/ 3
p

1/ 6
p

1/ 3
p

−2/ 6
p

1/ 3
p

1/ 6
p

3775.
Hence, R=QTA=

"
1/ 3
p

1/ 3
p

1/ 3
p

1/ 6
p

−2/ 6
p

1/ 6
p

#24 1 1
1 −1
1 1

35="
3/ 3
p

1/ 3
p

0 4/ 6
p

#
.

Comment. As commented earlier, the entries of R have actually all been computed during Gram�Schmidt,
so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at
Example 65, can you see this?

Check. Indeed, QR=

2664 1/ 3
p

1/ 6
p

1/ 3
p

−2/ 6
p

1/ 3
p

1/ 6
p

3775" 3/ 3
p

1/ 3
p

0 4/ 6
p

#
=

24 1 1
1 −1
1 1

35 equals A.
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