Problem 1. (4 points) Solve the initial value problem $\boldsymbol{y}^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right] \boldsymbol{y}, \quad \boldsymbol{y}(0)=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ on the extra sheet.

The solution is $\boldsymbol{y}(t)=$ \square
Make sure to check your answer by plugging into the differential equation! There will be no partial credit and you have plenty of time.

Solution.

- $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 1\end{array}\right]$ has characteristic polynomial $-\lambda(1-\lambda)-2=(\lambda+1)(\lambda-2)$.

Hence, the eigenvalues of A are $-1,2$.
The - 1 -eigenspace $\operatorname{null}\left(\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]\right)$ has basis $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.
The 2-eigenspace null $\left(\left[\begin{array}{cc}-2 & 1 \\ 2 & -1\end{array}\right]\right)$ has basis $\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Hence, $A=P D P^{-1}$ with $P=\left[\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right]$ and $D=\left[\begin{array}{ll}-1 & \\ & 2\end{array}\right]$.

- Finally, we compute the solution $\boldsymbol{y}(t)=e^{A t} \boldsymbol{y}_{0}$:

$$
\begin{aligned}
\boldsymbol{y}(t) & =\underbrace{}_{\left[\begin{array}{cc}
e^{-t} & e^{2 t} \\
-e^{-t} & 2 e^{2 t}
\end{array}\right]}=\frac{P e^{D t} P^{-1} \boldsymbol{y}_{0}}{\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
e^{-t} & \\
& e^{2 t}
\end{array}\right] \frac{1}{3}\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]}=\frac{1}{3}\left[\begin{array}{c}
-e^{-t}+4 e^{2 t} \\
e^{-t}+8 e^{2 t}
\end{array}\right]
\end{aligned}
$$

Problem 2. ($\mathbf{1}+\mathbf{3}+\mathbf{1}$ points) Consider the sequence a_{n} defined by $a_{n+2}=2 a_{n+1}+3 a_{n}$ and $a_{0}=1, a_{1}=7$.
(a) The next two terms are $a_{2}=\square$ and $a_{3}=\square$
(b) A Binet-like formula for a_{n} is $a_{n}=$
(c) $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\square$

Again, work on the extra sheet and be sure to check your answer to (b) by comparing with the values in (a).

Solution.

(a) $a_{2}=17, a_{3}=2 \cdot 17+3 \cdot 7=55$
(b) The recursion can be translated to $\left[\begin{array}{l}a_{n+2} \\ a_{n+1}\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}a_{n+1} \\ a_{n}\end{array}\right]$.

The eigenvalues of $\left[\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right]$ are $3,-1$.
Hence, $a_{n}=\alpha_{1} 3^{n}+\alpha_{2}(-1)^{n}$ and we only need to figure out the two unknowns α_{1}, α_{2}. We can do that using the two initial conditions: $a_{0}=\alpha_{1}+\alpha_{2}=1, a_{1}=3 \alpha_{1}-\alpha_{2}=7$.
Solving, we find $\alpha_{1}=2$ and $\alpha_{2}=-1$ so that, in conclusion, $a_{n}=2 \cdot 3^{n}-(-1)^{n}$.
Comment. Alternatively, we could have proceeded as we did in the case of the Fibonacci numbers: starting with the recursion matrix T, we compute its diagonalization $T=P D P^{-1}$. Multiplying out $P D^{n} P^{-1}\left[\begin{array}{l}a_{1} \\ a_{0}\end{array}\right]$, we obtain the Binet-like formula for a_{n}. However, this is more work than what we did.
(c) It follows from the Binet-like formula that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=3$.

Problem 3. ($\mathbf{1}+\mathbf{1}+\mathbf{2}+\mathbf{2}$ points) Fill in the blanks.
(a) If $A=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]$, then $e^{A t}=$
(b) An example of a 2×2 matrix that is not diagonalizable is \square
(c) If A has eigenvalue 3 , then A^{2} has eigenvalue $\square 4 A$ eigenvalue \square, and A^{T} eigenvalue \square,
(d) How many different Jordan normal forms are there in the following cases?

- A 5×5 matrix with eigenvalues $1,1,2,2,2$?
- A 9×9 matrix with eigenvalues $1,1,2,2,2,4,4,4,4$?

Solution.

(a) If $A=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]$, then $e^{A t}=\left[\begin{array}{ll}e^{3 t} & \\ & e^{-t}\end{array}\right]$.
(b) An example of a 2×2 matrix that is not diagonalizable is $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. (This is a Jordan block!)
(c) If A has eigenvalue 3 , then A^{2} has eigenvalue $3^{2}=9,4 A$ eigenvalue $4 \cdot 3=12$, and A^{T} eigenvalue 3 .
(d) $2 \cdot 3=6$ and $2 \cdot 3 \cdot 5=30$ different Jordan normal forms.

