Problem 1. We want to find values for the parameters a, b, c such that $z=a+b x+c \ln (y)$ best fits some given points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots$ Set up a linear system such that $[a, b, c]^{T}$ is a least squares solution.

Problem 2. Write down a precise definition of what it means for vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m} \in \mathbb{R}^{n}$ to be linearly independent.

Vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m} \in \mathbb{R}^{n}$ are linearly independent if and only if \ldots

Problem 3. Fill in the blanks.
(a) Let $A=\left[\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$. A basis for $\operatorname{null}(A)$ is
(b) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=$
(c) $\hat{\boldsymbol{x}}$ is a least squares solution of $A \boldsymbol{x}=\boldsymbol{b}$ if and only if \square
(d) $\operatorname{col}(A)$ is the orthogonal complement of \square. $\operatorname{null}(A)$ is the orthogonal complement of \square
(e) The linear system $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if \boldsymbol{b} is orthogonal to
(f) The projection matrix for orthogonally projecting onto $\operatorname{col}(A)$ is $P=$ \square
(g) If W is the space of all solutions to $x_{1}+2 x_{2}+x_{3}-x_{4}=0$, then $\operatorname{dim} W=\square$ and $\operatorname{dim} W^{\perp}=\square$.

