Please print your name:

Problem 1. We want to find values for the parameters a, b, c such that $z = a + bx + c\ln(y)$ best fits some given points $(x_1, y_1, z_1), (x_2, y_2, z_2), \dots$ Set up a linear system such that $[a, b, c]^T$ is a least squares solution.

Solution. The equations $a + bx_i + b\ln(y_i) = z_i$ translate into the system:

$$\begin{bmatrix} 1 & x_1 & \ln(y_1) \\ 1 & x_2 & \ln(y_2) \\ 1 & x_3 & \ln(y_3) \\ \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \end{bmatrix}$$

Of course, this is usually inconsistent. To find the best possible a, b, c we compute a least squares solution.

Problem 2. Write down a precise definition of what it means for vectors $v_1, v_2, ..., v_m \in \mathbb{R}^n$ to be linearly independent.

Solution. Vectors $v_1, v_2, ..., v_m \in \mathbb{R}^n$ are linearly independent if and only if the only solution to

$$x_1 v_1 + x_2 v_2 + ... + x_m v_m = 0$$

is the trivial one $(x_1 = x_2 = \dots = x_m = 0)$.

Problem 3. Fill in the blanks.

- (a) Let $A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$. A basis for null(A) is
- (b) $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} =$
- (c) \hat{x} is a least squares solution of Ax = b if and only if
- (d) $\operatorname{col}(A)$ is the orthogonal complement of $\operatorname{null}(A)$ is the orthogonal complement of
- (e) The linear system Ax = b is consistent if and only if b is orthogonal to
- (f) The projection matrix for orthogonally projecting onto $\operatorname{col}(A)$ is P =
- (g) If W is the space of all solutions to $x_1 + 2x_2 + x_3 x_4 = 0$, then dim W = and dim $W^{\perp} =$

Solution.

(a)
$$A = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$$
. A basis for null(A) is $\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 0 \\ -4 \\ 1 \end{bmatrix}$.

(b)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

- (c) \hat{x} is a least squares solution of Ax = b if and only if $A^TAx = A^Tb$.
- (d) col(A) is the orthogonal complement of $null(A^T)$. null(A) is the orthogonal complement of row(A).
- (e) The linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is orthogonal to $\text{null}(A^T)$.
- (f) The projection matrix for orthogonally projecting onto $\operatorname{col}(A)$ is $P = A(A^TA)^{-1}A^T$.
- (g) If W is the subspace of \mathbb{R}^4 of all solutions to $x_1 + 2x_2 + x_3 x_4 = 0$, then dim W = 3 and dim $W^{\perp} = 1$.