Problem 1. We want to find values for the parameters a, b, c such that $z=a+b x+c \ln (y)$ best fits some given points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right), \ldots$ Set up a linear system such that $[a, b, c]^{T}$ is a least squares solution.

Solution. The equations $a+b x_{i}+b \ln \left(y_{i}\right)=z_{i}$ translate into the system:

$$
\underbrace{\left[\begin{array}{ccc}
1 & x_{1} & \ln \left(y_{1}\right) \\
1 & x_{2} & \ln \left(y_{2}\right) \\
1 & x_{3} & \ln \left(y_{3}\right) \\
\vdots & \vdots & \vdots
\end{array}\right]}_{A}\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]=\underbrace{\left[\begin{array}{c}
z_{1} \\
z_{2} \\
z_{3} \\
\vdots
\end{array}\right]}_{z}
$$

Of course, this is usually inconsistent. To find the best possible a, b, c we compute a least squares solution.

Problem 2. Write down a precise definition of what it means for vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m} \in \mathbb{R}^{n}$ to be linearly independent.

Solution. Vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m} \in \mathbb{R}^{n}$ are linearly independent if and only if the only solution to

$$
x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+\ldots+x_{m} \boldsymbol{v}_{m}=\mathbf{0}
$$

is the trivial one $\left(x_{1}=x_{2}=\ldots=x_{m}=0\right)$.

Problem 3. Fill in the blanks.
(a) Let $A=\left[\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$. A basis for $\operatorname{null}(A)$ is
(b) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=$
(c) $\hat{\boldsymbol{x}}$ is a least squares solution of $A \boldsymbol{x}=\boldsymbol{b}$ if and only if \square
(d) $\operatorname{col}(A)$ is the orthogonal complement of \square $\operatorname{null}(A)$ is the orthogonal complement of \square
(e) The linear system $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if \boldsymbol{b} is orthogonal to \square
(f) The projection matrix for orthogonally projecting onto $\operatorname{col}(A)$ is $P=$ \square
(g) If W is the space of all solutions to $x_{1}+2 x_{2}+x_{3}-x_{4}=0$, then $\operatorname{dim} W=\square$ and $\operatorname{dim} W^{\perp}=\square$

Solution.

(a) $A=\left[\begin{array}{llll}1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 4\end{array}\right]$. A basis for $\operatorname{null}(A)$ is $\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-3 \\ 0 \\ -4 \\ 1\end{array}\right]$.
(b) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
(c) $\hat{\boldsymbol{x}}$ is a least squares solution of $A \boldsymbol{x}=\boldsymbol{b}$ if and only if $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$.
(d) $\operatorname{col}(A)$ is the orthogonal complement of $\operatorname{null}\left(A^{T}\right) \cdot \operatorname{null}(A)$ is the orthogonal complement of $\operatorname{row}(A)$.
(e) The linear system $A \boldsymbol{x}=\boldsymbol{b}$ is consistent if and only if \boldsymbol{b} is orthogonal to $\operatorname{null}\left(A^{T}\right)$.
(f) The projection matrix for orthogonally projecting onto $\operatorname{col}(A)$ is $P=A\left(A^{T} A\right)^{-1} A^{T}$.
(g) If W is the subspace of \mathbb{R}^{4} of all solutions to $x_{1}+2 x_{2}+x_{3}-x_{4}=0$, then $\operatorname{dim} W=3$ and $\operatorname{dim} W^{\perp}=1$.

