Midterm #2

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 31 points in total. You need to show work to receive full credit.

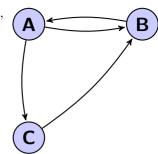
Good luck!

Problem 1. (8 points) Solve the initial value problem $\mathbf{y}' = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix} \mathbf{y}, \quad \mathbf{y}(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}.$

Problem 2. (6 points) Suppose the internet consists of only the three webpages A, B, C which link to each other as indicated in the diagram.

Rank these webpages by computing their PageRank vector:





The ranking of the websites is

The runking of the websites is	

Problem 3. (5 points) Fill in the blanks.

(a) Let A be the 4×4 matrix for orthogonally projecting onto a 2-dimensional subspace of \mathbb{R}^4 .

Then det(A) =and the eigenvalues (indicate if repeated) of A are

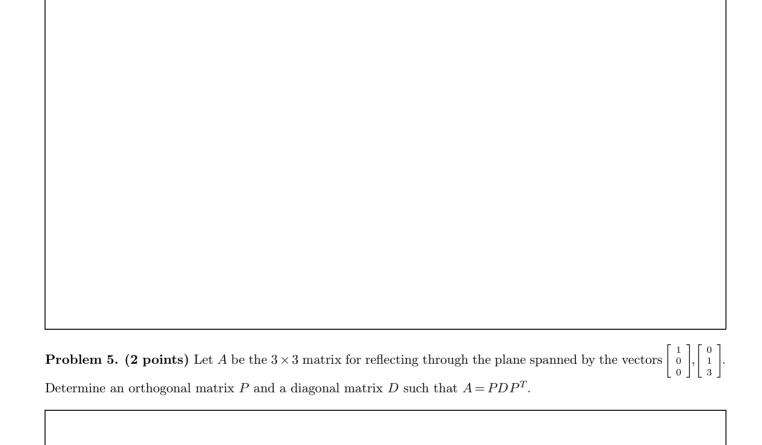
(b) If A is a projection matrix, then $A^{2020} =$

(c) If A is a reflection matrix, then $A^{2020} =$

and A^T eigenvalue (d) If A has eigenvalue 2, then A^3 has eigenvalue 3A eigenvalue

(e) If $A = \begin{bmatrix} -2 & 0 \\ 0 & 4 \end{bmatrix}$, then $A^n =$ and $e^{At} =$ **Problem 4.** (1+4+1 points) Consider the sequence a_n defined by $a_{n+2} = a_{n+1} + 2a_n$ and $a_0 = 1$, $a_1 = 8$.

- (a) The next two terms are $a_2 = \boxed{}$ and $a_3 = \boxed{}$
- (b) A Binet-like formula for a_n is $a_n = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$, and $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$



Problem 6. (1+1+2 points) Fill in the blanks.

- (a) An example of a 2×2 matrix with eigenvalue $\lambda=5$ that is not diagonalizable is
- (b) If $N^3 = \mathbf{0}$, then $e^{Nt} =$
- (c) How many different Jordan normal forms are there in the following cases?
 - A 4×4 matrix with eigenvalues 2, 5, 5, 5?
 - A 8×8 matrix with eigenvalues 1, 1, 2, 2, 4, 4, 4, 4?

(extra scratch paper)