## Please print your name:

No notes, calculators or tools of any kind are permitted. There are 31 points in total. You need to show work to receive full credit.

## Good luck!

**Problem 1. (8 points)** Solve the initial value problem  $y' = \begin{bmatrix} 1 & 3 \\ -1 & 5 \end{bmatrix} y$ ,  $y(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ .

Solution.

 $\bullet \quad A = \left[ \begin{array}{cc} 1 & 3 \\ -1 & 5 \end{array} \right] \text{ has characteristic polynomial } (1-\lambda)(5-\lambda) + 3 = \lambda^2 - 6\lambda + 8 = (\lambda-2)(\lambda-4).$ 

Hence, the eigenvalues of A are 2, 4.

The 4-eigenspace null  $\left( \begin{bmatrix} -3 & 3 \\ -1 & 1 \end{bmatrix} \right)$  has basis  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ .

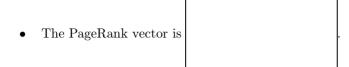
The 2-eigenspace null  $\left(\begin{bmatrix} -1 & 3 \\ -1 & 3 \end{bmatrix}\right)$  has basis  $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ .

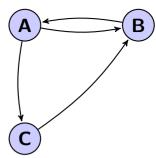
Hence,  $A = PDP^{-1}$  with  $P = \begin{bmatrix} 1 & 3 \\ 1 & 1 \end{bmatrix}$  and  $D = \begin{bmatrix} 4 & \\ & 2 \end{bmatrix}$ .

• Finally, we compute the solution  $y(t) = e^{At}y_0$ :

**Problem 2.** (6 points) Suppose the internet consists of only the three webpages A, B, C which link to each other as indicated in the diagram.

Rank these webpages by computing their PageRank vector:



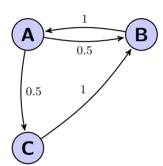


• The ranking of the websites is

**Solution.** Let  $a_t$  be the probability that we will be on page A at time t. Likewise,  $b_t$ ,  $c_t$  are the probabilities that we will be on page B or C.

We obtain the following transition behaviour:

$$\begin{bmatrix} a_{t+1} \\ b_{t+1} \\ c_{t+1} \end{bmatrix} = \begin{bmatrix} 0 \cdot a_t + 1 \cdot b_t + 0 \cdot c_t \\ \frac{1}{2} \cdot a_t + 0 \cdot b_t + 1 \cdot c_t \\ \frac{1}{2} \cdot a_t + 0 \cdot b_t + 0 \cdot c_t \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 \\ \frac{1}{2} & 0 & 0 \end{bmatrix} \begin{bmatrix} a_t \\ b_t \\ c_t \end{bmatrix}$$



To find the equilibrium state, we again determine an appropriate 1-eigenvector.

The 1-eigenspace is  $\operatorname{null}\left(\begin{bmatrix} -1 & 1 & 0\\ \frac{1}{2} & -1 & 1\\ \frac{1}{2} & 0 & -1 \end{bmatrix}\right)$  which has basis  $\begin{bmatrix} 2\\ 2\\ 1 \end{bmatrix}$ .

The corresponding equilibrium state is  $\frac{1}{5}\begin{bmatrix}2\\2\\1\end{bmatrix}$ . This is the PageRank vector.

In other words, after browsing randomly for a long time, there is (about) a  $\frac{2}{5} = 40\%$  chance to be at page A, a  $\frac{2}{5} = 40\%$  chance to be at page B, and a  $\frac{1}{5} = 20\%$  chance to be at page C.

We therefore rank A and B highest (tied), and C lowest.

## Problem 3. (5 points) Fill in the blanks.

(a) Let A be the  $4 \times 4$  matrix for orthogonally projecting onto a 2-dimensional subspace of  $\mathbb{R}^4$ .

Then  $\det(A) = \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 

- (b) If A is a projection matrix, then  $A^{2020} =$
- (c) If A is a reflection matrix, then  $A^{2020} =$
- (d) If A has eigenvalue 2, then  $A^3$  has eigenvalue 3A eigenvalue 3A, and  $A^T$  eigenvalue 3A.
- (e) If  $A = \begin{bmatrix} -2 & 0 \\ 0 & 4 \end{bmatrix}$ , then  $A^n = \begin{bmatrix} \\ \end{bmatrix}$  and  $e^{At} = \begin{bmatrix} \\ \end{bmatrix}$ .

## Solution.

- (a) det(A) = 0, and the eigenvalues of A are 0, 0, 1, 1.
- (b) If A is a projection matrix, then  $A^{2020} = A$ . (Because  $A^2 = A$ .)
- (c) If A is a reflection matrix, then  $A^{2020} = I$ . (Because  $A^2 = I$ .)
- (d) If A has eigenvalue 2, then  $A^3$  has eigenvalue  $2^3 = 8$ , 3A eigenvalue  $3 \cdot 2 = 6$ , and  $A^T$  eigenvalue 2.
- (e) If  $A = \begin{bmatrix} -2 & 0 \\ 0 & 4 \end{bmatrix}$ , then  $A^n = \begin{bmatrix} (-2)^n \\ 4^n \end{bmatrix}$  and  $e^{At} = \begin{bmatrix} e^{-2t} \\ e^{4t} \end{bmatrix}$ .

**Problem 4.** (1+4+1 points) Consider the sequence  $a_n$  defined by  $a_{n+2} = a_{n+1} + 2a_n$  and  $a_0 = 1$ ,  $a_1 = 8$ .

- (a) The next two terms are  $a_2 =$  and  $a_3 =$
- (b) A Binet-like formula for  $a_n$  is  $a_n = \boxed{}$  , and  $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \boxed{}$

Solution.

- (a)  $a_2 = 10$ ,  $a_3 = 26$
- (b) The recursion can be translated to  $\begin{bmatrix} a_{n+2} \\ a_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix}$ . The eigenvalues of  $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$  are 2, -1.

Hence,  $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$  and we only need to figure out the two unknowns  $\alpha_1$ ,  $\alpha_2$ . We can do that using the two initial conditions:  $a_0 = \alpha_1 + \alpha_2 = 1$ ,  $a_1 = 2\alpha_1 - \alpha_2 = 8$ .

Solving, we find  $\alpha_1 = 3$  and  $\alpha_2 = -2$  so that, in conclusion,  $a_n = 3 \cdot 2^n - 2(-1)^n$ .

It follows from the Binet-like formula that  $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 2$ .

**Problem 5.** (2 points) Let A be the  $3 \times 3$  matrix for reflecting through the plane spanned by the vectors  $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ ,  $\begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$ . Determine an orthogonal matrix P and a diagonal matrix D such that  $A = PDP^T$ .

**Solution.** The normal direction is spanned by  $\begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}$ .

Normalizing all vectors, we can choose  $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{10} & -3/\sqrt{10} \\ 0 & 3/\sqrt{10} & 1/\sqrt{10} \end{bmatrix}$  and  $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$ .

Problem 6. (1+1+2 points) Fill in the blanks.

(a) An example of a  $2 \times 2$  matrix with eigenvalue  $\lambda = 5$  that is not diagonalizable is



- (c) How many different Jordan normal forms are there in the following cases?
  - A  $4 \times 4$  matrix with eigenvalues 2, 5, 5, 5?
  - A  $8 \times 8$  matrix with eigenvalues 1, 1, 2, 2, 4, 4, 4, 4?

Solution.

- (a) An example of a  $2 \times 2$  matrix with eigenvalue  $\lambda = 5$  that is not diagonalizable is  $\begin{bmatrix} 5 & 1 \\ 0 & 5 \end{bmatrix}$ . (This is a Jordan block!)
- (b) If  $N^3 = \mathbf{0}$ , then  $e^{Nt} = I + Nt + \frac{1}{2}N^2t^2$ .
- (c)  $1\cdot 3=3$  and  $2\cdot 2\cdot 5=20$  different Jordan normal forms.

(extra scratch paper)