Problem 1.

(a) Using Gram-Schmidt, obtain an orthonormal basis for $W=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right]\right\}$.
(b) Determine the orthogonal projection of $\left[\begin{array}{c}2 \\ 6 \\ -1 \\ 3\end{array}\right]$ onto W.
(c) Determine the $Q R$ decomposition of the matrix $\left[\begin{array}{ccc}0 & 2 & 1 \\ 1 & 3 & -1 \\ 0 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$.
(d) Determine a basis for the orthogonal complement W^{\perp}.

Problem 2.

(a) Find the least squares solution to the system $\left[\begin{array}{cc}1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 2\end{array}\right] \boldsymbol{x}=\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 1\end{array}\right]$.
(b) What is the orthogonal projection of $\left.\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 1\end{array}\right] \begin{array}{cc}1 & 2\end{array}\right]$ onto the space $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-2 \\ -1 \\ 0 \\ 2\end{array}\right]\right\}$?
(c) Determine the least squares line for the data points $(-2,1),(-1,0),(0,3),(2,1)$.
(d) Determine the projection matrix P for orthogonally projecting onto W.

Problem 3. A scientist tries to find the relation between the mysterious quantities x and y.

She measures the following values: | x | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| y | 2 | 5 | 9 | 17 |

(a) Our scientist has reason to expect that y is a linear function of the form $a+b x$. Find the best estimate for the coefficients.
(b) What changes if we suppose that y is a quadratic function of the form $a+b x+c x^{2}$? Set up a linear system such that $[a, b, c]^{T}$ is a least squares solution.

Problem 4.

(a) Diagonalize the symmetric matrix $A=\left[\begin{array}{cc}1 & 3 \\ 3 & -7\end{array}\right]$ as $A=P D P^{T}$. (That is, find the matrices P and D.)
(b) Let A be a symmetric 2×2 matrix with 2-eigenvector $\left[\begin{array}{c}2 \\ -1\end{array}\right]$ and $\operatorname{det}(A)=-6$. Diagonalize A.

Problem 5.

(a) Is it true that $A^{T} A$ is always symmetric?
(b) When is $A^{T} A$ a diagonal matrix?
(c) Note that $\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]=2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]-\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]+\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$.

Why is it incorrect that the orthogonal projection of $\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]$ onto $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$ is $2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]-\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$? Explain!
(d) For which matrices A is it true that $A^{-1}=A^{T}$?

Problem 6.

(a) We want to find values for the parameters a, b, c such that $y=a+b x+\frac{c}{x}$ best fits some given points $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right), \ldots$ Set up a linear system such that $[a, b, c]^{T}$ is a least squares solution.
(b) We want to find values for the parameters a, b such that $y=(a+b x) e^{x}$ best fits some given points $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right), \ldots$ Set up a linear system such that $[a, b]^{T}$ is a least squares solution.
(c) We want to find values for the parameters a, b, c such that $z=a+b x-c \sqrt{y}$ best fits some given points $\left(x_{1}, y_{1}, z_{1}\right)$, $\left(x_{2}, y_{2}, z_{2}\right), \ldots$ Set up a linear system such that $[a, b, c]^{T}$ is a least squares solution.

Problem 7. Let W be the subspace of \mathbb{R}^{4} of all solutions to $x_{1}+x_{2}+x_{3}-x_{4}=0$.
(a) Find a basis for W.
(b) Find a basis for the orthogonal complement W^{\perp}.
(c) Compute the orthogonal projection of $\boldsymbol{b}=(1,1,1,1)^{T}$ onto W^{\perp}.
(d) Find \boldsymbol{b}_{1} in W and \boldsymbol{b}_{2} in W^{\perp} such that $\boldsymbol{b}_{1}+\boldsymbol{b}_{2}=(1,1,1,1)^{T}$.

Problem 8. Suppose that A is a 3×5 matrix of rank 3 .
(a) For each of the four fundamental subspaces of A, state which space it is a subspace of.
(b) What are the dimensions of all four fundamental subspaces?
(c) Which fundamental subspaces are orthogonal complements of each other?
(d) For the specific matrix $A=\left[\begin{array}{lllll}1 & 2 & 1 & 3 & 4 \\ 2 & 4 & 0 & 1 & 3 \\ 3 & 6 & 0 & 1 & 4\end{array}\right]$, compute a basis for each fundamental subspace.
(e) Observe that $\operatorname{rank}(A)=3$. Then, verify that all your predictions made in the first three parts do in fact hold.

