Example 164. Find the best approximation of $f(x)=\sqrt{x}$ on the interval $[0,1]$ using a function of the form $y=a x$.
Solution. The orthogonal projection of $f:[0,1] \rightarrow \mathbb{R}$ onto ${ }^{1}$ $\operatorname{span}\{x\}$ is

$$
\frac{\langle f, x\rangle}{\langle x, x\rangle} x=\frac{\int_{0}^{1} f(t) t \mathrm{~d} t}{\int_{0}^{1} t^{2} \mathrm{~d} t} x=3 x \int_{0}^{1} t f(t) \mathrm{d} t .
$$

In our case, the best approximation is

$$
3 x \int_{0}^{1} t \sqrt{t} \mathrm{~d} t=3 x \int_{0}^{1} t^{3 / 2} \mathrm{~d} t=3 x\left[\frac{1}{5 / 2} t^{5 / 2}\right]_{0}^{1}=\frac{6}{5} x
$$

Example 165. Find the best approximation of $f(x)=\sqrt{x}$ on the interval $[0,1]$ using a function of the form $y=a+b x$.
Important observation. The orthogonal projection of $f:[0,1] \rightarrow \mathbb{R}$ onto $\operatorname{span}\{1, x\}$ is not simply the projection onto 1 plus the projection onto x. That's because 1 and x are not orthogonal:

$$
\langle 1, x\rangle=\int_{0}^{1} t \mathrm{~d} t=\frac{1}{2} \neq 0 .
$$

Solution. To find an orthogonal basis for $\operatorname{span}\{1, x\}$, following Gram-Schmidt, we compute

$$
x-\binom{\text { projection of }}{x \text { onto } 1}=x-\frac{\langle x, 1\rangle}{\langle 1,1\rangle} 1=x-\frac{1}{2}
$$

Hence, $1, x-\frac{1}{2}$ is an orthogonal basis for $\operatorname{span}\{1, x\}$.
The orthogonal projection of $f:[0,1] \rightarrow \mathbb{R}$ onto $\operatorname{span}\{1, x\}=\operatorname{span}\left\{1, x-\frac{1}{2}\right\}$ therefore is

$$
\begin{aligned}
\frac{\langle f, 1\rangle}{\langle 1,1\rangle} 1+\frac{\left\langle f, x-\frac{1}{2}\right\rangle}{\left\langle x-\frac{1}{2}, x-\frac{1}{2}\right\rangle}\left(x-\frac{1}{2}\right) & =\int_{0}^{1} f(t) \mathrm{d} t+\frac{\int_{0}^{1} f(t)\left(t-\frac{1}{2}\right) \mathrm{d} t}{\int_{0}^{1}\left(t-\frac{1}{2}\right)^{2} \mathrm{~d} t}\left(x-\frac{1}{2}\right) \\
& =\int_{0}^{1} f(t) \mathrm{d} t+(12 x-6) \int_{0}^{1} f(t)\left(t-\frac{1}{2}\right) \mathrm{d} t
\end{aligned}
$$

In our case, this best approximation is

$$
\begin{aligned}
\int_{0}^{1} \sqrt{t} \mathrm{~d} t+(12 x-6) \int_{0}^{1} \sqrt{t}\left(t-\frac{1}{2}\right) \mathrm{d} t & =\left[\frac{1}{3 / 2} t^{3 / 2}\right]_{0}^{1}+(12 x-6)\left[\frac{1}{5 / 2} t^{5 / 2}-\frac{1}{2} \frac{1}{3 / 2} t^{3 / 2}\right]_{0}^{1} \\
& =\frac{2}{3}+(12 x-6)\left(\frac{2}{5}-\frac{1}{3}\right)=\frac{4}{5}\left(x+\frac{1}{3}\right)
\end{aligned}
$$

The plot below confirms how good this linear approximation is (compare with the previous example):

