Review. complex numbers, fundamental theorem of algebra

Example 141. We can identify complex numbers $x+i y$ with vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2}. Then, what is the geometric effect of multiplying with i ?
Solution. Algebraically, the effect of multiplying $x+i y$ with i obviously is $i(x+i y)=-y+i x$.
Since multiplication with i is obviously linear, we can represent it using a 2×2 matrix J acting on vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$. $J\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ (this is the same as saying $i \cdot 1=i$) and $J\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ (this is the same as saying $i \cdot i=-1$). Hence, $J=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. This is precisely the rotation matrix for a rotation by 90°.
In other words, multiplication with i has the geometric effect of rotating complex numbers by 90°.
Comment. The relation $i^{2}=-1$ translates to $J^{2}=-I$.
Complex numbers as 2×2 matrices. In light of the above, we can express complex numbers $x+i y$ as the 2×2 matrix $x I+y J=\left[\begin{array}{cc}x & -y \\ y & x\end{array}\right]$. Adding and multiplying these matrices behaves exactly the same way as adding or multiplying the complex numbers directly.
For instance, $(2+3 i)(4-i)=8+10 i-3 i^{2}=11+10 i$ versus $\left[\begin{array}{cc}2 & -3 \\ 3 & 2\end{array}\right]\left[\begin{array}{cc}4 & 1 \\ -1 & 4\end{array}\right]=\left[\begin{array}{cc}11 & -10 \\ 10 & 11\end{array}\right]$.
Likewise for inverses: $\frac{1}{2+3 i}=\frac{2-3 i}{(2+3 i)(2-3 i)}=\frac{2-3 i}{13}$ versus $\left[\begin{array}{cc}2 & -3 \\ 3 & 2\end{array}\right]^{-1}=\frac{1}{13}\left[\begin{array}{cc}2 & 3 \\ -3 & 2\end{array}\right]$

Example 142. (extra) Find a unitary matrix Q whose first column is a multiple of $\left[\begin{array}{l}1 \\ i\end{array}\right]$.
Solution. We need to find a vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ such that $\left[\begin{array}{l}1 \\ i\end{array}\right]^{*}\left[\begin{array}{l}a \\ b\end{array}\right]=a-i b=0$. Choose, say, $a=i, b=1$.
This leads to the unitary matrix $Q=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & i \\ i & 1\end{array}\right]$. Indeed, $Q^{*} Q=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -i \\ -i & 1\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & i \\ i & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

More details on the spectral theorem

Let us add $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ to our notations for the dot product: $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\boldsymbol{v}^{T} \boldsymbol{w}=\boldsymbol{v} \cdot \boldsymbol{w}$.

- In our story of orthogonality, the important player has been the dot product. However, one could argue that the fundamental quantity is actually the norm:
$\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\frac{1}{4}\left(\|\boldsymbol{v}+\boldsymbol{w}\|^{2}-\|\boldsymbol{v}-\boldsymbol{w}\|^{2}\right)$. See Example 18.
- Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A such that $A=A^{T}$) are of interest.
For any matrix $A,\langle A \boldsymbol{v}, \boldsymbol{w}\rangle=\left\langle\boldsymbol{v}, A^{T} \boldsymbol{w}\right\rangle$.
It follows that, a matrix A is symmetric if and only if $\langle A \boldsymbol{v}, \boldsymbol{w}\rangle=\langle\boldsymbol{v}, A \boldsymbol{w}\rangle$ for all vectors $\boldsymbol{v}, \boldsymbol{w}$.
- Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with $Q^{T} Q=I$).

Then, $\langle Q \boldsymbol{v}, Q \boldsymbol{w}\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.
In fact, a matrix A is orthogonal if and only if $\langle A \boldsymbol{v}, A \boldsymbol{w}\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ for all vectors $\boldsymbol{v}, \boldsymbol{w}$.
Comment. We observed in Example 134 that orthogonal matrices Q correspond to rotations ($\operatorname{det} Q=$ 1) or reflections ($\operatorname{det} Q=-1$) [or products thereof]. The equality $\langle Q \boldsymbol{v}, Q \boldsymbol{w}\rangle=\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ encodes the fact that these types (and only these!) of geometric transformations preserve angles and lengths.

(Spectral theorem)

A $n \times n$ matrix A is symmetric if and only if it can be decomposed as $A=P D P^{T}$, where

- $\quad D$ is a diagonal matrix,

The diagonal entries λ_{i} are the eigenvalues of A.

- $\quad P$ is orthogonal.

The columns of P are eigenvectors of A.
Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real, and, most importantly, the eigenspaces of A are orthogonal.
The "only if" part says that, if A is symmetric, then we get a diagonalization $A=P D P^{T}$. The "if' part says that, if $A=P D P^{T}$, then A is symmetric (which follows from $A^{T}=\left(P D P^{T}\right)^{T}=\left(P^{T}\right)^{T} D^{T} P^{T}=P D P^{T}=A$).

Let us prove the following important parts of the spectral theorem.

Theorem 143.

(a) If A is symmetric, then the eigenspaces of A are orthogonal.
(b) If A is real and symmetric, then the eigenvalues of A are real.

Proof.
(a) We need to show that, if \boldsymbol{v} and \boldsymbol{w} are eigenvectors of A with different eigenvalues, then $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\mathbf{0}$. Suppose that $A \boldsymbol{v}=\lambda \boldsymbol{v}$ and $A \boldsymbol{w}=\mu \boldsymbol{w}$ with $\lambda \neq \mu$.
Then, $\lambda\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle\lambda \boldsymbol{v}, \boldsymbol{w}\rangle=\langle A \boldsymbol{v}, \boldsymbol{w}\rangle=\left\langle\boldsymbol{v}, A^{T} \boldsymbol{w}\right\rangle=\langle\boldsymbol{v}, A \boldsymbol{w}\rangle=\langle\boldsymbol{v}, \mu \boldsymbol{w}\rangle=\mu\langle\boldsymbol{v}, \boldsymbol{w}\rangle$.
However, since $\lambda \neq \mu, \lambda\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\mu\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ is only possible if $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=0$.
(b) Suppose λ is a nonreal eigenvalue with nonzero eigenvector v. Then, \bar{v} is a $\bar{\lambda}$-eigenvector and, since $\lambda \neq \bar{\lambda}$, we have two eigenvectors with different eigenvalues. By the first part, these two eigenvectors must be orthogonal in the sense that $\overline{\boldsymbol{v}}^{T} \boldsymbol{v}=0$. But $\overline{\boldsymbol{v}}^{T} \boldsymbol{v}=\boldsymbol{v}^{*} \boldsymbol{v}=\|\boldsymbol{v}\|^{2} \neq 0$. This shows that it is impossible to have a nonzero eigenvector for a nonreal eigenvalue.

Let us highlight the following point we used in our proof:
Let A be a real matrix. If \boldsymbol{v} is a λ-eigenvector, then $\overline{\boldsymbol{v}}$ is a $\bar{\lambda}$-eigenvector.
See, for instance, Example 78. This is just a consequence of the basic fact that we cannot algebraically distinguish between $+i$ and $-i$.

