
Sketch of Lecture 27 Fri, 3/29/2019

Example 131. Solve the IVP y 0=
�
0 1
1 0

�
y with y(0)=

�
1
0

�
.

Solution. Recall that the solution to y0=Ay, y(0)= y0 is y= eAty0.

� We �rst diagonalize A=
�
0 1
1 0

�
.

�
���� ¡� 1
1 ¡�

����=�2¡ 1, so the eigenvalues are �1.

� The 1-eigenspace null
��

¡1 1
1 ¡1

��
has basis

�
1
1

�
.

� The ¡1-eigenspace null
��

1 1
1 1

��
has basis

�
¡1
1

�
.

� Hence, A=PDP¡1 with P =
�
1 ¡1
1 1

�
and D=

�
1 0
0 ¡1

�
.

� Compute the solution y= eAty0:

y= eAty0 = PeDtP¡1y0

=

�
1 ¡1
1 1

�"
et 0

0 e¡t

#
=

"
et ¡e¡t

et e¡t

#

1
2

�
1 1
¡1 1

��
1
0

�
=

1

2

�
1
¡1

�
=
1
2

"
et+ e¡t

et¡ e¡t

#

Check. Indeed, y1=
1

2
(et+ e¡t) and y2=

1

2
(et ¡ e¡t) satisfy the system of di�erential equations y10 = y2

and y2
0 = y1 as well as the initial conditions y1(0)= 1, y2(0)= 0.

Comment. You have actually met these functions in Calculus! y1=cosh(t) and y2= sinh(t). Check out the
next example for the connection to cos(t) and sin(t).

Example 132.

(a) Solve the IVP y 0=
�
0 ¡1
1 0

�
y with y(0)=

�
1
0

�
.

(b) Show that y=
�
cos(t)
sin(t)

�
solves the same IVP. What do you conclude?

Solution.

(a) From Example 137, we know that A=PDP¡1 with P =
�
i ¡i
1 1

�
, D=

�
i 0
0 ¡i

�
.

The system is therefore solved by:

y(t) = PeDtP¡1
�
1
0

�
=

�
i ¡i
1 1

�"
eit

e¡it

#
1
2i

�
1 i
¡1 i

��
1
0

�
=

1
2i

�
i ¡i
1 1

�"
eit

e¡it

#�
1
¡1

�
=
1
2i

�
i ¡i
1 1

�"
eit

¡e¡it

#
=
1
2i

"
ieit+ ie¡it

eit¡ e¡it

#

=
1
2

"
eit+ e¡it

¡ieit+ ie¡it

#

(b) Clearly, y(0)=
�
cos(0)
sin(0)

�
=

�
1
0

�
. On the other hand, y10 =¡sin(t)=¡y2 and y20 = cos(t)= y1, so that

y0=
�
0 ¡1
1 0

�
y. Since the solution to the IVP is unique, it follows that

�
cos(t)
sin(t)

�
=
1

2

"
eit+ e¡it

¡ieit+ ie¡it

#
.

We have just discovered Euler's identity!
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Theorem 133. (Euler's identity) ei�= cos(�)+ i sin(�)

Another short proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the �ve
fundamental constants).

Rotation matrices

Example 134. Write down a 2� 2 matrix Q for rotation by angle � in the plane.
Comment. Why should we even be able to represent something like rotation by a matrix? Meaning that Qx
should be the vector x rotated by �. Recall from Linear Algebra I that every linear map can be represented
by a matrix. Then think about why rotation is a linear map.

Solution. We can determine Q by �guring out Q
�
1
0

�
(the �rst column of Q) and Q

�
0
1

�
(the second column

of Q).

Since Q
�
1
0

�
=

�
cos�
sin�

�
and Q

�
0
1

�
=

�
¡sin�
cos�

�
, we conclude that Q=

�
cos� ¡sin�
sin� cos�

�
.

Comment. Note that we don't need previous knowledge of cos and sin. We could have introduced these
trig functions on the spot.
Comment. Note that it is geometrically obvious that Q is orthogonal. (Why?)

It is clear that
� cos �

sin �

�2=1. Noting that
� cos �

sin �

�2= cos2�+ sin2�, we have rediscovered Pythagoras.

Advanced comment. Actually, every orthogonal 2�2 matrix Q with det(Q)=1 is a rotation by some angle
�. Orthogonal matrices with det(Q)=¡1 are re�ections.
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