Example 131. Solve the IVP $\boldsymbol{y}^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \boldsymbol{y}$ with $\boldsymbol{y}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
Solution. Recall that the solution to $\boldsymbol{y}^{\prime}=A \boldsymbol{y}, \boldsymbol{y}(0)=\boldsymbol{y}_{0}$ is $\boldsymbol{y}=e^{A t} \boldsymbol{y}_{0}$.

- We first diagonalize $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
- $\left|\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right|=\lambda^{2}-1$, so the eigenvalues are ± 1.
- The 1-eigenspace null $\left(\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]\right)$ has basis $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
- The -1-eigenspace null $\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)$ has basis $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
- Hence, $A=P D P^{-1}$ with $P=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$.
- Compute the solution $\boldsymbol{y}=e^{A t} \boldsymbol{y}_{0}$:

$$
\left.\begin{array}{rl}
\boldsymbol{y}=e^{A t} \boldsymbol{y}_{0}= & P e^{D t} P^{-1} \boldsymbol{y}_{0} \\
= & \underbrace{\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{-t}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{=\left[\begin{array}{cc}
e^{t}-e^{-t} \\
e^{t} & e^{-t}
\end{array}\right]}=\frac{1}{2}\left[\begin{array}{c}
e^{t}+e^{-t} \\
e^{t}-e^{-t}
\end{array}\right] \\
-1
\end{array}\right] .
$$

Check. Indeed, $y_{1}=\frac{1}{2}\left(e^{t}+e^{-t}\right)$ and $y_{2}=\frac{1}{2}\left(e^{t}-e^{-t}\right)$ satisfy the system of differential equations $y_{1}^{\prime}=y_{2}$ and $y_{2}^{\prime}=y_{1}$ as well as the initial conditions $y_{1}(0)=1, y_{2}(0)=0$.
Comment. You have actually met these functions in Calculus! $y_{1}=\cosh (t)$ and $y_{2}=\sinh (t)$. Check out the next example for the connection to $\cos (t)$ and $\sin (t)$.

Example 132.

(a) Solve the IVP $\boldsymbol{y}^{\prime}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \boldsymbol{y}$ with $\boldsymbol{y}(0)=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(b) Show that $\boldsymbol{y}=\left[\begin{array}{c}\cos (t) \\ \sin (t)\end{array}\right]$ solves the same IVP. What do you conclude?

Solution.

(a) From Example 137, we know that $A=P D P^{-1}$ with $P=\left[\begin{array}{cc}i & -i \\ 1 & 1\end{array}\right], D=\left[\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right]$.

The system is therefore solved by:

$$
\begin{aligned}
\boldsymbol{y}(t) & =P e^{D t} P^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
e^{i t} & \\
& e^{-i t}
\end{array}\right] \frac{1}{2 i}\left[\begin{array}{cc}
1 & i \\
-1 & i
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\frac{1}{2 i}\left[\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
e^{i t} & \\
& e^{-i t}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\frac{1}{2 i}\left[\begin{array}{cc}
i & -i \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
e^{i t} \\
-e^{-i t}
\end{array}\right]=\frac{1}{2 i}\left[\begin{array}{c}
i e^{i t}+i e^{-i t} \\
e^{i t}-e^{-i t}
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{c}
e^{i t}+e^{-i t} \\
-i e^{i t}+i e^{-i t}
\end{array}\right]
\end{aligned}
$$

(b) Clearly, $\boldsymbol{y}(0)=\left[\begin{array}{c}\cos (0) \\ \sin (0)\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. On the other hand, $y_{1}^{\prime}=-\sin (t)=-y_{2}$ and $y_{2}^{\prime}=\cos (t)=y_{1}$, so that $\boldsymbol{y}^{\prime}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right] \boldsymbol{y}$. Since the solution to the IVP is unique, it follows that $\left[\begin{array}{c}\cos (t) \\ \sin (t)\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}e^{i t}+e^{-i t} \\ -i e^{i t}+i e^{-i t}\end{array}\right]$. We have just discovered Euler's identity!

Theorem 133. (Euler's identity) $e^{i \theta}=\cos (\theta)+i \sin (\theta)$

Another short proof. Observe that both sides are the (unique) solution to the IVP $y^{\prime}=i y, y(0)=1$.
On lots of T-shirts. In particular, with $x=\pi$, we get $e^{\pi i}=-1$ or $e^{i \pi}+1=0$ (which connects the five fundamental constants).

Rotation matrices

Example 134. Write down a 2×2 matrix Q for rotation by angle θ in the plane.
Comment. Why should we even be able to represent something like rotation by a matrix? Meaning that $Q \boldsymbol{x}$ should be the vector \boldsymbol{x} rotated by θ. Recall from Linear Algebra I that every linear map can be represented by a matrix. Then think about why rotation is a linear map.

Solution. We can determine Q by figuring out $Q\left[\begin{array}{l}1 \\ 0\end{array}\right]$ (the first column of Q) and $Q\left[\begin{array}{l}0 \\ 1\end{array}\right]$ (the second column of Q).
Since $Q\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$ and $Q\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-\sin \theta \\ \cos \theta\end{array}\right]$, we conclude that $Q=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$.
Comment. Note that we don't need previous knowledge of cos and sin. We could have introduced these trig functions on the spot.

Comment. Note that it is geometrically obvious that Q is orthogonal. (Why?)
It is clear that $\left\|\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]\right\|^{2}=1$. Noting that $\left\|\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]\right\|^{2}=\cos ^{2} \theta+\sin ^{2} \theta$, we have rediscovered Pythagoras.
Advanced comment. Actually, every orthogonal 2×2 matrix Q with $\operatorname{det}(Q)=1$ is a rotation by some angle θ. Orthogonal matrices with $\operatorname{det}(Q)=-1$ are reflections.

