Example 124. Consider the following system of (second-order) initial value problems:

$$
\begin{aligned}
& y_{1}^{\prime \prime}=2 y_{1}^{\prime}-3 y_{2}^{\prime}+7 y_{2} \\
& y_{2}^{\prime}=4 y_{1}^{\prime}+y_{2}^{\prime}-5 y_{1}
\end{aligned} \quad y_{1}(0)=2, y_{1}^{\prime}(0)=3, \quad y_{2}(0)=-1, \quad y_{2}^{\prime}(0)=1
$$

Write it as a first-order initial value problem in the form $\boldsymbol{y}^{\prime}=A \boldsymbol{y}, \boldsymbol{y}(0)=\boldsymbol{y}_{0}$.
Solution. Introduce $y_{3}=y_{1}^{\prime}$ and $y_{4}=y_{2}^{\prime}$. Then, the given system translates into

$$
\boldsymbol{y}^{\prime}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 7 & 2 & -3 \\
-5 & 0 & 4 & 1
\end{array}\right] \boldsymbol{y}, \quad \boldsymbol{y}(0)=\left[\begin{array}{c}
2 \\
-1 \\
3 \\
1
\end{array}\right]
$$

Review. Jordan normal form

Example 125.

(a) What are the possible Jordan normal forms of a 3×3 matrix with eigenvalues $3,3,3$?
(b) What are the possible Jordan normal forms of a 4×4 matrix with eigenvalues $3,3,3,3$?
(c) What if the matrix is 5×5 and has eigenvalues $4,4,3,3,3$?

Solution.
(a) $\left[\begin{array}{lll}3 & & \\ & 3 & \\ & & 3\end{array}\right],\left[\begin{array}{lll}3 & & \\ & 3 & 1 \\ & & 3\end{array}\right],\left[\begin{array}{lll}3 & 1 & \\ & 3 & 1 \\ & & 3\end{array}\right]$

The dimension of the 3 -eigenspace equals the number of Jordan blocks: $3,2,1$, respectively.
Comment. Note that, say, $\left[\begin{array}{lll}3 & 1 & \\ & 3 & \\ & & 3\end{array}\right]$ is equivalent to $\left[\begin{array}{lll}3 & & \\ & 3 & 1 \\ & & 3\end{array}\right]$ because the ordering of the diagonal blocks does not matter (as you known from diagonalization).
(b) Now, there are 5 possibilities:
$\left[\begin{array}{llll}3 & & & \\ & 3 & & \\ & & 3 & \\ & & & 3\end{array}\right],\left[\begin{array}{llll}3 & & & \\ & 3 & & \\ & & 3 & 1 \\ & & & 3\end{array}\right],\left[\begin{array}{llll}3 & 1 & & \\ & 3 & & \\ & & 3 & 1 \\ & & & 3\end{array}\right],\left[\begin{array}{llll}3 & & & \\ & 3 & 1 & \\ & & 3 & 1 \\ & & & 3\end{array}\right],\left[\begin{array}{llll}3 & 1 & & \\ & 3 & 1 & \\ & & 3 & 1 \\ & & & 3\end{array}\right]$
The dimension of the 3 -eigenspace equals the number of Jordan blocks: $4,3,2,2,1$, respectively.

Note that this is just all possible (namely, 3) Jordan normal forms of a 3×3 matrix with eigenvalues $3,3,3$ combined with all possible (namely, 2) Jordan normal forms of a 2×2 matrix with eigenvalues 4, 4. In total, that makes $3 \cdot 2=6$ possibilities.

Comment. Let $p(n)$ be the number of inequivalent Jordan normal forms of an $n \times n$ matrix with a single eigenvalue, n times repeated. We have seen that $p(2)=2, p(3)=3, p(4)=5$. Note that $p(n)$ is equal to the number of ways of writing n as an ordered sum of positive integers: for instance, $p(4)=5$ because $4=3+1=2+2=2+1+1=1+1+1+1$.
$p(n)$ is referred to as the partition function and, surprisingly, is a remarkably interesting mathematical object. https://en.wikipedia.org/wiki/Partition_function_(number_theory)

Example 126. What are the possible Jordan normal forms of a 6×6 matrix with eigenvalues $3,3,7,7,7,7$?
Solution. There are $2 \cdot 5=10$ possible Jordan normal forms for such a matrix:

Example 127. How many different Jordan normal forms are there in the following cases?
(a) A 8×8 matrix with eigenvalues $1,1,2,2,2,4,4,4$?
(b) A 11×11 matrix with eigenvalues $1,1,1,2,2,2,2,4,4,4,4$?

Solution.
(a) $2 \cdot 3 \cdot 3=18$ possible Jordan normal forms
(b) $3 \cdot 5 \cdot 5=75$ possible Jordan normal forms

