Example 124. Consider the following system of (second-order) initial value problems:

$$\begin{array}{ll} y_1''=2y_1'-3y_2'+7y_2\\ y_2'=4y_1'+y_2'-5y_1 \end{array} \quad y_1(0)=2, \ y_1'(0)=3, \ y_2(0)=-1, \ y_2'(0)=1 \end{array}$$

Write it as a first-order initial value problem in the form y' = Ay, $y(0) = y_0$. Solution. Introduce $y_3 = y'_1$ and $y_4 = y'_2$. Then, the given system translates into

$$\boldsymbol{y}' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 7 & 2 & -3 \\ -5 & 0 & 4 & 1 \end{bmatrix} \boldsymbol{y}, \quad \boldsymbol{y}(0) = \begin{bmatrix} 2 \\ -1 \\ 3 \\ 1 \end{bmatrix}.$$

Review. Jordan normal form

Example 125.

- (a) What are the possible Jordan normal forms of a 3×3 matrix with eigenvalues 3, 3, 3?
- (b) What are the possible Jordan normal forms of a 4×4 matrix with eigenvalues 3, 3, 3, 3?
- (c) What if the matrix is 5×5 and has eigenvalues 4, 4, 3, 3, 3?

Solution.

 $(a) \begin{bmatrix} 3 \\ 3 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ -3 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ -3 & 1 \\ -3 \end{bmatrix}$

The dimension of the 3-eigenspace equals the number of Jordan blocks: 3, 2, 1, respectively.

Comment. Note that, say, $\begin{bmatrix} 3 & 1 \\ 3 & 3 \end{bmatrix}$ is equivalent to $\begin{bmatrix} 3 & 1 \\ 3 & 1 \\ 3 \end{bmatrix}$ because the ordering of the diagonal blocks does not matter (as you known from diagonalization).

(b) Now, there are 5 possibilities:

3			1	3					3	1				3				1	3	1			1
	3				3					3					3	1				3	1		
	3		'			3	1	'			3	1	'			3	1	'			3	1	
L		3		_			3		L			3					3		L			3	

The dimension of the 3-eigenspace equals the number of Jordan blocks: 4, 3, 2, 2, 1, respectively.

$$(c) \begin{bmatrix} 3 & & & \\ & 3 & & \\ & & 4 & \\ & & & 4 \end{bmatrix}, \begin{bmatrix} 3 & & & \\ & 3 & & \\ & & 3 & & \\ & & & 4 & 1 \\ & & & 4 & 1 \end{bmatrix}, \begin{bmatrix} 3 & & & & \\ & 3 & 1 & & \\ & & 3 & & \\ & & & 4 & \\ & & & 4 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 & & & \\ & 3 & 1 & & \\ & & 3 & 1 & & \\ & & 3 & 1 & & \\ & & & 3 & 1 & & \\ & & & 3 & 1 & & \\ & & & 3 & 1 & & \\ & & & & 4 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 & & & \\ & 3 & 1 & & \\ & & 3 & 1 & & \\ & & & 3 & 1 & & \\ & & & & 4 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 & & & \\ & 3 & 1 & & \\ & & 3 & 1 & & \\ & & & 3 & 1 & & \\ & & & & 4 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 & & & \\ & 3 & 1 & & \\ & & & 3 & 1 & & \\ & & & & 4 & 1 \end{bmatrix}$$

Note that this is just all possible (namely, 3) Jordan normal forms of a 3×3 matrix with eigenvalues 3,3,3 combined with all possible (namely, 2) Jordan normal forms of a 2×2 matrix with eigenvalues 4,4. In total, that makes $3 \cdot 2 = 6$ possibilities.

Comment. Let p(n) be the number of inequivalent Jordan normal forms of an $n \times n$ matrix with a single eigenvalue, n times repeated. We have seen that p(2) = 2, p(3) = 3, p(4) = 5. Note that p(n) is equal to the number of ways of writing n as an ordered sum of positive integers: for instance, p(4) = 5 because 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

p(n) is referred to as the partition function and, surprisingly, is a remarkably interesting mathematical object. https://en.wikipedia.org/wiki/Partition_function_(number_theory) **Example 126.** What are the possible Jordan normal forms of a 6×6 matrix with eigenvalues 3, 3, 7, 7, 7, 7?

Solution. There are $2 \cdot 5 = 10$ possible Jordan normal forms for such a matrix:

Example 127. How many different Jordan normal forms are there in the following cases?

- (a) A 8×8 matrix with eigenvalues 1, 1, 2, 2, 2, 4, 4, 4?
- (b) A 11×11 matrix with eigenvalues 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4?

Solution.

- (a) $2 \cdot 3 \cdot 3 = 18$ possible Jordan normal forms
- (b) $3 \cdot 5 \cdot 5 = 75$ possible Jordan normal forms