Example 116. We only discuss linear differential equations (DEs). Non-linear DEs include $y^{\prime}=y^{2}+1$ or the second-order equation $y^{\prime \prime}=\sin \left(t y^{\prime}\right)+y$.
The order of a DE indicates the highest occuring derivative.
Note, however, that $y^{\prime \prime}=\sin (t) y^{\prime}+y$ is a linear DE, because y and its derivatives occur linearly.
We will see here how to solve those linear DEs which have constant coefficients. That is, the coefficients of y are constants, as opposed to functions (like $\sin (t)$) depending on t.

Review.

- The solution to $\boldsymbol{y}^{\prime}=A \boldsymbol{y}, \boldsymbol{y}(0)=\boldsymbol{y}_{0}$ is $\boldsymbol{y}(t)=e^{A t} \boldsymbol{y}_{0}$.

Why? Because $\boldsymbol{y}^{\prime}(t)=A e^{A t} \boldsymbol{y}_{0}=A \boldsymbol{y}(t)$ and $\boldsymbol{y}(0)=e^{0 A} \boldsymbol{y}_{0}=\boldsymbol{y}_{0}$.

- If we have the diagonalization $A=P D P^{-1}$, then $e^{A}=P e^{D} P^{-1}\left(\right.$ and $\left.e^{A t}=P e^{D t} P^{-1}\right)$.
- If $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right]$, then $e^{A}=\left[\begin{array}{cc}e^{2} & 0 \\ 0 & e^{5}\end{array}\right]$ and $e^{A t}=\left[\begin{array}{cc}e^{2 t} & 0 \\ 0 & e^{5 t}\end{array}\right]$.

Example 117. Solve the initial value problem $\quad \boldsymbol{y}^{\prime}=\left[\begin{array}{cc}0 & -2 \\ -1 & 1\end{array}\right] \boldsymbol{y}, \quad \boldsymbol{y}(0)=\left[\begin{array}{l}3 \\ 0\end{array}\right]$.

Solution.

- $A=\left[\begin{array}{cc}0 & -2 \\ -1 & 1\end{array}\right]$ has characteristic polynomial $-\lambda(1-\lambda)-2=(\lambda+1)(\lambda-2)$.

Hence, the eigenvalues of A are $-1,2$.
The - 1 -eigenspace $\operatorname{null}\left(\left[\begin{array}{cc}1 & -2 \\ -1 & 2\end{array}\right]\right)$ has basis $\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
The 2-eigenspace $\operatorname{null}\left(\left[\begin{array}{ll}-2 & -2 \\ -1 & -1\end{array}\right]\right)$ has basis $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
Hence, $A=P D P^{-1}$ with $P=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}-1 & \\ & 2\end{array}\right]$.

- Finally, we compute the solution $\boldsymbol{y}(t)=e^{A t} \boldsymbol{y}_{0}$:

$$
\begin{aligned}
\boldsymbol{y}(t) & =P e^{D t} P^{-1} \boldsymbol{y}_{0} \\
& =\underbrace{\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{-t} & \\
& e^{2 t}
\end{array}\right]}_{\left[\begin{array}{cc}
2 e^{-t} & -e^{2 t} \\
e^{-t} & e^{2 t}
\end{array}\right]} \frac{\frac{1}{3}\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
0
\end{array}\right]}{\left[\begin{array}{l}
1 \\
-1
\end{array}\right]}=\left[\begin{array}{c}
2 e^{-t}+e^{2 t} \\
e^{-t}-e^{2 t}
\end{array}\right]
\end{aligned}
$$

Example 118. Write the (second-order) differential equation $y^{\prime \prime}=2 y^{\prime}+y$ as a system of (firstorder) differential equations.
Solution. Write $y_{1}=y$ and $y_{2}=y^{\prime}$. Then $y^{\prime \prime}=2 y^{\prime}+y$ becomes $y_{2}^{\prime}=2 y_{2}+y_{1}$.
Therefore, $y^{\prime \prime}=2 y^{\prime}+y$ translates into the first-order system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{2} \\ y_{2}^{\prime}=y_{1}+2 y_{2}\end{array}\right.$.
In matrix form, this is $\boldsymbol{y}^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right] \boldsymbol{y}$.
Comment. Hence, we care about systems of differential equations, even if we work with just one function.
Note. The "trick" of looking at the pair $\left[\begin{array}{l}y \\ y^{\prime}\end{array}\right]$ instead of a single function is what we used to translate the Fibonacci recurrence into a 2×2 system.

Example 119. Write the (third-order) differential equation $y^{\prime \prime \prime}=3 y^{\prime \prime}-2 y^{\prime}+y$ as a system of (first-order) differential equations.
Solution. Write $y_{1}=y, y_{2}=y^{\prime}$ and $y_{3}=y^{\prime \prime}$.
Then, $y^{\prime \prime \prime}=3 y^{\prime \prime}-2 y^{\prime}+y$ translates into the first-order system $\left\{\begin{array}{l}y_{1}^{\prime}=y_{2} \\ y_{2}^{\prime}=y_{3} \\ y_{3}^{\prime}=y_{1}-2 y_{2}+3 y_{3}\end{array}\right.$. In matrix form, this is $\boldsymbol{y}^{\prime}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3\end{array}\right] y$.

The Jordan normal form

Note that we currently only know how to compute $e^{A t}$ when A is diagonalizable. Our next goal is to be able to compute the matrix exponential for all matrices.

Example 120. Diagonalize, if possible, the matrix $A=\left[\begin{array}{ll}4 & 1 \\ & 4\end{array}\right]$.
Solution. The eigenvalues of A are 4,4 .
However, the 4-eigenspace null($\left[\begin{array}{ll}0 & 1 \\ & 0\end{array}\right]$) is only 1-dimensional.
Hence, A is not diagonalizable.

Definition 121. A $\boldsymbol{\lambda}$-Jordan block is a matrix of the form $\left[\begin{array}{llll}\lambda & 1 & & \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ & & & \lambda\end{array}\right]$.
Note that if this matrix is $m \times m$, then its only eigenvalue is λ (repeated m times).
As in the previous example, the λ-eigenspace is 1 -dimensional (which is as small as possible).

Theorem 122. (Jordan normal form) Every $n \times n$ matrix A can be written as $A=P J P^{-1}$, where J is a block diagonal matrix

$$
J=\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{r}
\end{array}\right]
$$

with each J_{i} a Jordan block. J is called the Jordan normal form of A.
Up to the ordering of the Jordan blocks, the Jordan normal form of A is unique.
Comment. If A is diagonalizable, then J is just a usual diagonal matrix.
Example 123. What are the possible Jordan normal forms of a 3×3 matrix with eigenvalues $4,4,4$?
Solution. $\left[\begin{array}{lll}4 & & \\ & 4 & \\ & & 4\end{array}\right],\left[\begin{array}{lll}4 & & \\ & 4 & 1 \\ & & 4\end{array}\right],\left[\begin{array}{lll}4 & 1 & \\ & 4 & 1 \\ & & 4\end{array}\right]$
The dimension of the 4 -eigenspace equals the number of Jordan blocks: $3,2,1$, respectively.
Comment. Note that, say, $\left[\begin{array}{ccc}4 & 1 & \\ & 4 & \\ & & 4\end{array}\right]$ is equivalent to $\left[\begin{array}{ccc}4 & & \\ & 4 & 1 \\ & & 4\end{array}\right]$ because the ordering of the diagonal blocks does not matter (as you known from diagonalization).

