Example 116. We only discuss linear differential equations (DEs). Non-linear DEs include $y' = y^2 + 1$ or the second-order equation $y'' = \sin(ty') + y$.

The order of a DE indicates the highest occuring derivative.

Note, however, that $y'' = \sin(t)y' + y$ is a linear DE, because y and its derivatives occur linearly. We will see here how to solve those linear DEs which have constant coefficients. That is, the coefficients of y are constants, as opposed to functions (like $\sin(t)$) depending on t.

Review.

- The solution to $\mathbf{y}' = A\mathbf{y}$, $\mathbf{y}(0) = \mathbf{y}_0$ is $\mathbf{y}(t) = e^{At}\mathbf{y}_0$. Why? Because $\mathbf{y}'(t) = Ae^{At}\mathbf{y}_0 = A\mathbf{y}(t)$ and $\mathbf{y}(0) = e^{0A}\mathbf{y}_0 = \mathbf{y}_0$.
- If we have the diagonalization $A = PDP^{-1}$, then $e^A = Pe^DP^{-1}$ (and $e^{At} = Pe^{Dt}P^{-1}$).
- If $A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$, then $e^A = \begin{bmatrix} e^2 & 0 \\ 0 & e^5 \end{bmatrix}$ and $e^{At} = \begin{bmatrix} e^{2t} & 0 \\ 0 & e^{5t} \end{bmatrix}$.

Example 117. Solve the initial value problem $\mathbf{y}' = \begin{bmatrix} 0 & -2 \\ -1 & 1 \end{bmatrix} \mathbf{y}, \quad \mathbf{y}(0) = \begin{bmatrix} 3 \\ 0 \end{bmatrix}.$

Solution.

- $A = \begin{bmatrix} 0 & -2 \\ -1 & 1 \end{bmatrix}$ has characteristic polynomial $-\lambda(1-\lambda) 2 = (\lambda+1)(\lambda-2)$. Hence, the eigenvalues of A are -1, 2. The -1-eigenspace null $\begin{pmatrix} 1 & -2 \\ -1 & 2 \end{pmatrix}$ has basis $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$. The 2-eigenspace null $\begin{pmatrix} -2 & -2 \\ -1 & -1 \end{pmatrix}$ has basis $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Hence, $A = PDP^{-1}$ with $P = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.
- Finally, we compute the solution $\boldsymbol{y}(t) = e^{A t} \boldsymbol{y}_0$:

$$\begin{aligned} \boldsymbol{y}(t) &= P e^{Dt} P^{-1} \boldsymbol{y}_{0} \\ &= \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} e^{-t} \\ e^{2t} \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2e^{-t} + e^{2t} \\ e^{-t} - e^{2t} \end{bmatrix} \\ & \begin{bmatrix} \frac{2e^{-t} - e^{2t}}{e^{-t} - e^{2t}} \end{bmatrix} \end{aligned}$$

Example 118. Write the (second-order) differential equation y'' = 2y' + y as a system of (first-order) differential equations.

Solution. Write $y_1 = y$ and $y_2 = y'$. Then y'' = 2y' + y becomes $y'_2 = 2y_2 + y_1$. Therefore, y'' = 2y' + y translates into the first-order system $\begin{cases} y'_1 = y_2 \\ y'_2 = y_1 + 2y_2 \end{cases}$ In matrix form, this is $\boldsymbol{y}' = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \boldsymbol{y}$.

Comment. Hence, we care about systems of differential equations, even if we work with just one function. **Note.** The "trick" of looking at the pair $\begin{bmatrix} y \\ y' \end{bmatrix}$ instead of a single function is what we used to translate the Fibonacci recurrence into a 2 × 2 system. **Example 119.** Write the (third-order) differential equation y''' = 3y'' - 2y' + y as a system of (first-order) differential equations.

Solution. Write $y_1 = y$, $y_2 = y'$ and $y_3 = y''$.

Then, y''' = 3y'' - 2y' + y translates into the first-order system $\begin{cases} y'_1 = y_2 \\ y'_2 = y_3 \\ y'_3 = y_1 - 2y_2 + 3y_3 \end{cases}$ In matrix form, this is $y' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix} y$.

The Jordan normal form

Note that we currently only know how to compute e^{At} when A is diagonalizable. Our next goal is to be able to compute the matrix exponential for all matrices.

Example 120. Diagonalize, if possible, the matrix $A = \begin{bmatrix} 4 & 1 \\ & 4 \end{bmatrix}$.

Solution. The eigenvalues of A are 4, 4.

However, the 4-eigenspace null $\left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right)$ is only 1-dimensional.

Hence, A is not diagonalizable.

Definition 121. A λ -Jordan block is a matrix of the form $\begin{bmatrix} \lambda & \lambda \\ \lambda & \ddots \\ & \ddots & 1 \end{bmatrix}$.

Note that if this matrix is $m \times m$, then its only eigenvalue is λ (repeated m times).

As in the previous example, the λ -eigenspace is 1-dimensional (which is as small as possible).

Theorem 122. (Jordan normal form) Every $n \times n$ matrix A can be written as $A = PJP^{-1}$, where J is a block diagonal matrix

$$J = \begin{bmatrix} J_1 & & \\ & J_2 & \\ & & \ddots & \\ & & & J_r \end{bmatrix}$$

with each J_i a Jordan block. J is called the **Jordan normal form** of A. Up to the ordering of the Jordan blocks, the Jordan normal form of A is unique.

Comment. If A is diagonalizable, then J is just a usual diagonal matrix.

Example 123. What are the possible Jordan normal forms of a 3×3 matrix with eigenvalues 4, 4, 4?

Solution. $\begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 4 & 1 \\ 4 & 1 \\ 4 \end{bmatrix}$

The dimension of the 4-eigenspace equals the number of Jordan blocks: 3, 2, 1, respectively.

Comment. Note that, say, $\begin{bmatrix} 4 & 1 \\ & 4 \\ & & 4 \end{bmatrix}$ is equivalent to $\begin{bmatrix} 4 & & \\ & 4 & 1 \\ & & 4 \end{bmatrix}$ because the ordering of the diagonal blocks does not matter (as you known from diagonalization).