
Sketch of Lecture 21 Fri, 3/1/2019

Example 101. Let A be the matrix for orthogonally projecting onto W = span

(24 1
1
1

35;
24 ¡1

0
1

35
)
.

(a) Diagonalize A (without �rst computing A) as A=PDPT .
Comment. This gives us yet another way to compute projection matrices: we can directly write down
the matrices P ;D for the diagonalizationA=PDPT . The main point here is that the diagonalization
of a A nicely reveals all the information about the projection.

(b) Is A invertible, orthogonal, symmetric?

Solution.

(a) The eigenvalues of A are 1; 1; 0.
The 1-eigenspace of A is W (2-dimensional), and the 0-eigenspace is W? (1-dimensional).
[Make sure this makes perfect sense!]
In order to achieve a diagonalization PDPT we need to choose P to be orthogonal (which we can do
here because the eigenspaces are orthogonal).

First, we need to compute a basis for W?. After a little work (do it!!), we �ndW?= span

(24 1
¡2
1

35
)
.

We therefore choose D=

24 1
1
0

35 and, after normalizing columns, P =

264 1/ 3
p

¡1/ 2
p

1/ 6
p

1/ 3
p

0 ¡2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

375.
Comment. If we choose P =

24 1 ¡1 1
1 0 ¡2
1 1 1

35, we only get A=PDP¡1.

(b) A is not invertible (because 0 is an eigenvalue) and therefore also cannot be orthogonal.
A is indeed symmetric. That's because AT = (PDPT )T =(PT)TDTPT =PDPT =A.

By the way. Multiplying out A=PDPT , we can �nd that A= 1

6

24 1 ¡2 1
¡2 4 ¡2
1 ¡2 1

35.

Example 102. Let A be the matrix for re�ecting through the planeW = span

(24 1
1
1

35;
24 ¡1

0
1

35
)
.

(a) Diagonalize A (without �rst computing A) as A=PDPT .

(b) Is A invertible, orthogonal, symmetric?

Solution.

(a) This time, the eigenvalues of A are 1; 1;¡1.
The 1-eigenspace of A is W (the plane), and the ¡1-eigenspace is W? (the normal of the plane).

In order to achieve a diagonalization PDPT we need to choose P to be orthogonal (which we can do
here because the eigenspaces are orthogonal).

As in the previous example, W?= span

(24 1
¡2
1

35
)
.

We therefore choose D=

24 1
1
¡1

35 and, after normalizing columns, P =

264 1/ 3
p

¡1/ 2
p

1/ 6
p

1/ 3
p

0 ¡2/ 6
p

1/ 3
p

1/ 2
p

1/ 6
p

375.
(b) A is invertible (because 0 is not an eigenvalue).

By the same reasoning as in the previous example, A is symmetric.
Finally, note that A2= I (re�ecting twice isn't doing anything), so that A¡1=A. It follows that A
is orthogonal, because A¡1=A=AT .
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By the way. Multiplying out A=PDPT , we can �nd that A= 1

3

24 2 2 ¡1
2 ¡1 2
¡1 2 2

35.
Comment. Similarly, a n�n matrix corresponds to a re�ection (through a hyperplane) if and only if it has
a (n¡1)-dimensional 1-eigenspace and a 1-dimensional ¡1-eigenspace and these two spaces are orthogonal.

An alternative way of computing re�ection matrices. Realize that, if n is the vector orthogonal to the plane
(i.e. n is the normal vector of the plane), then re�ecting v means sending it to v¡2(projection of v onto n).

We already observed that n=
24 1
¡2
1

35.
Hence, the re�ection of v is v¡ 2(projection of v onto n)= v¡ 2nn �v

n �n =v¡ 2
nnTv

nTn
=
�
I ¡ 2nn

T

nTn

�
v.

Accordingly, the re�ection matrix is A= I ¡ 2nn
T

nTn
=

24 1
1
1

35¡ 2

6

24 1 ¡2 1
¡2 4 ¡2
1 ¡2 1

35= 1

3

24 2 2 ¡1
2 ¡1 2

¡1 2 2

35.
Comment. In other words, we got A from subtracting 2 times the projection matrix onto n from I.
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