Example 101. Let A be the matrix for orthogonally projecting onto $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.
(a) Diagonalize A (without first computing A) as $A=P D P^{T}$.

Comment. This gives us yet another way to compute projection matrices: we can directly write down the matrices P, D for the diagonalization $A=P D P^{T}$. The main point here is that the diagonalization of a A nicely reveals all the information about the projection.
(b) Is A invertible, orthogonal, symmetric?

Solution.

(a) The eigenvalues of A are $1,1,0$.

The 1-eigenspace of A is W (2-dimensional), and the 0-eigenspace is W^{\perp} (1-dimensional).
[Make sure this makes perfect sense!]
In order to achieve a diagonalization $P D P^{T}$ we need to choose P to be orthogonal (which we can do here because the eigenspaces are orthogonal).
First, we need to compute a basis for W^{\perp}. After a little work (do it!!), we find $W^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$.
We therefore choose $D=\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & 0\end{array}\right]$ and, after normalizing columns, $P=\left[\begin{array}{ccc}1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6} \\ 1 / \sqrt{3} & 0 & -2 / \sqrt{6} \\ 1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6}\end{array}\right]$.
Comment. If we choose $P=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1\end{array}\right]$, we only get $A=P D P^{-1}$.
(b) A is not invertible (because 0 is an eigenvalue) and therefore also cannot be orthogonal.
A is indeed symmetric. That's because $A^{T}=\left(P D P^{T}\right)^{T}=\left(P^{T}\right)^{T} D^{T} P^{T}=P D P^{T}=A$.
By the way. Multiplying out $A=P D P^{T}$, we can find that $A=\frac{1}{6}\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1\end{array}\right]$.
Example 102. Let A be the matrix for reflecting through the plane $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$.
(a) Diagonalize A (without first computing A) as $A=P D P^{T}$.
(b) Is A invertible, orthogonal, symmetric?

Solution.

(a) This time, the eigenvalues of A are $1,1,-1$.

The 1-eigenspace of A is W (the plane), and the -1-eigenspace is W^{\perp} (the normal of the plane).
In order to achieve a diagonalization $P D P^{T}$ we need to choose P to be orthogonal (which we can do here because the eigenspaces are orthogonal).
As in the previous example, $W^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$.
We therefore choose $\left.D=\left[\begin{array}{llll}1 & & & \\ & 1 & & \\ & & -1\end{array}\right] \begin{array}{ccc}{[} & 1 &] \\ & & \end{array}\right]$ and, after normalizing columns, $P=\left[\begin{array}{ccc}1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6} \\ 1 / \sqrt{3} & 0 & -2 / \sqrt{6} \\ 1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6}\end{array}\right]$.
(b) A is invertible (because 0 is not an eigenvalue).

By the same reasoning as in the previous example, A is symmetric.
Finally, note that $A^{2}=I$ (reflecting twice isn't doing anything), so that $A^{-1}=A$. It follows that A is orthogonal, because $A^{-1}=A=A^{T}$.

By the way. Multiplying out $A=P D P^{T}$, we can find that $A=\frac{1}{3}\left[\begin{array}{rrr}2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2\end{array}\right]$.
Comment. Similarly, a $n \times n$ matrix corresponds to a reflection (through a hyperplane) if and only if it has a $(n-1)$-dimensional 1-eigenspace and a 1-dimensional -1-eigenspace and these two spaces are orthogonal.

An alternative way of computing reflection matrices. Realize that, if \boldsymbol{n} is the vector orthogonal to the plane (i.e. \boldsymbol{n} is the normal vector of the plane), then reflecting \boldsymbol{v} means sending it to $\boldsymbol{v}-2$ (projection of \boldsymbol{v} onto \boldsymbol{n}).

We already observed that $\boldsymbol{n}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$.
Hence, the reflection of \boldsymbol{v} is $\boldsymbol{v}-2($ projection of \boldsymbol{v} onto $\boldsymbol{n})=\boldsymbol{v}-2 \boldsymbol{n} \frac{\boldsymbol{n} \cdot \boldsymbol{v}}{\boldsymbol{n} \cdot \boldsymbol{n}}=\boldsymbol{v}-2 \frac{n n^{T} \boldsymbol{v}}{\boldsymbol{n}^{T} \boldsymbol{n}}=\left(I-2 \frac{n n^{T}}{\boldsymbol{n}^{T} \boldsymbol{n}}\right) \boldsymbol{v}$.
Accordingly, the reflection matrix is $A=I-2 \frac{\boldsymbol{n} \boldsymbol{n}^{T}}{\boldsymbol{n}^{T} \boldsymbol{n}}=\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & 1\end{array}\right]-\frac{2}{6}\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1\end{array}\right]=\frac{1}{3}\left[\begin{array}{rrr}2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2\end{array}\right]$.
Comment. In other words, we got A from subtracting 2 times the projection matrix onto n from I.

