Application: Fibonacci numbers

The numbers $0,1,1,2,3,5,8,13,21,34, \ldots$ are called Fibonacci numbers.
They are defined by the recursion $F_{n+1}=F_{n}+F_{n-1}$ and $F_{0}=0, F_{1}=1$.
How fast are they growing?
Have a look at ratios of Fibonacci numbers: $\frac{2}{1}=2, \frac{3}{2}=1.5, \frac{5}{3}=1.6, \frac{13}{8}=1.625, \frac{21}{13}=1.615, \frac{34}{21}=1.619, \ldots$
These ratios approach the golden ratio $\varphi=\frac{1+\sqrt{5}}{2}=1.618 \ldots$
In other words, it appears that $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{1+\sqrt{5}}{2}$. This indeed follows from Theorem 93 below.
The crucial insight is the following simple observation:
$F_{n+1}=F_{n}+F_{n-1}$ is equivalent to $\left[\begin{array}{c}F_{n+1} \\ F_{n}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$.

In particular, $\left[\begin{array}{c}F_{n+1} \\ F_{n}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}\left[\begin{array}{l}F_{1} \\ F_{0}\end{array}\right]$.
Comment. Recurrence equations are discrete analogs of differential equations. We will later see the same idea applied when we reduce the order of a differential equation by introducing additional equations.

Everything we observe here about Fibonacci numbers holds for other sequences that satisfy similar recursion equations.

Theorem 93. (Binet's formula) $F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$
Proof. $\left[\begin{array}{c}F_{n+1} \\ F_{n}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}\left[\begin{array}{c}F_{1} \\ F_{0}\end{array}\right]$

- We already observed that thee recurrence $F_{n+1}=F_{n}+F_{n-1}$ translates into $\left[\begin{array}{c}F_{n+1} \\ F_{n}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]$ and, thus, $\left[\begin{array}{c}F_{n+1} \\ F_{n}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]^{n}\left[\begin{array}{c}F_{1} \\ F_{0}\end{array}\right]$.
- We therefore diagonalize $T=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ as $T=P D P^{-1}$ with

$$
D=\left[\begin{array}{ll}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right], \quad P=\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right], \quad \lambda_{1}=\frac{1+\sqrt{5}}{2} \approx 1.618, \quad \lambda_{2}=\frac{1-\sqrt{5}}{2} \approx-0.618
$$

Comment. λ_{1} is the golden ratio!

- It follows that:

$$
\begin{aligned}
{\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right]=T^{n}\left[\begin{array}{c}
F_{1} \\
F_{0}
\end{array}\right] } & =P D^{n} P^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\lambda_{1} & \lambda_{2} \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1}^{n} & \\
\lambda_{2}^{n}
\end{array}\right] \frac{1}{\lambda_{1}-\lambda_{2}}\left[\begin{array}{cc}
1 & -\lambda_{2} \\
-1 & \lambda_{1}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
\lambda_{1}^{n+1} & \lambda_{2}^{n+1} \\
\lambda_{1}^{n} & \lambda_{2}^{n}
\end{array}\right] \frac{1}{\sqrt{5}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\frac{1}{\sqrt{5}}\left[\begin{array}{c}
\lambda_{1}^{n+1}-\lambda_{2}^{n+1} \\
\lambda_{1}^{n}-\lambda_{2}^{n}
\end{array}\right]
\end{aligned}
$$

- Hence, $F_{n}=\frac{1}{\sqrt{5}}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right)$, which is the claimed formula.

Comment. For large $n, F_{n} \approx \frac{1}{\sqrt{5}} \lambda_{1}^{n}$ (because λ_{2}^{n} becomes very small). In fact, $F_{n}=\operatorname{round}\left(\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)$. Back to the quotient of Fibonacci numbers. In particular, because λ_{1}^{n} dominates λ_{2}^{n}, it is now transparent that the ratios $\frac{F_{n+1}}{F_{n}}$ approach $\lambda_{1}=\frac{1+\sqrt{5}}{2} \approx 1.618$. To be precise, note that

$$
\frac{F_{n+1}}{F_{n}}=\frac{\frac{1}{\sqrt{5}}\left(\lambda_{1}^{n+1}-\lambda_{2}^{n+1}\right)}{\frac{1}{\sqrt{5}}\left(\lambda_{1}^{n}-\lambda_{2}^{n}\right)}=\frac{\lambda_{1}^{n+1}-\lambda_{2}^{n+1}}{\lambda_{1}^{n}-\lambda_{2}^{n}}=\frac{\lambda_{1}-\lambda_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}}{1-\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{n}} \stackrel{n \rightarrow \infty}{\longrightarrow} \frac{\lambda_{1}-0}{1-0}=\lambda_{1}
$$

In fact, it follows from $\lambda_{2}<0$ that the ratios $\frac{F_{n+1}}{F_{n}}$ approach λ_{1} in the alternating fashion that we observed numerically earlier. Can you see that?

Note that, given any Fibonacci-like recursion, we can apply our linear algebra skills in the same fashion. The next example illustrates how this is set up.

Example 94. Suppose the sequence a_{n} satisfies $a_{n+3}=3 a_{n+2}-2 a_{n+1}+7 a_{n}$. Write down a matrix-vector version of this recursion.
Solution. $\left[\begin{array}{l}a_{n+3} \\ a_{n+2} \\ a_{n+1}\end{array}\right]=\left[\begin{array}{ccc}3 & -2 & 7 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}a_{n+2} \\ a_{n+1} \\ a_{n}\end{array}\right]$

