
Sketch of Lecture 15 Mon, 2/11/2019

Review: More on diagonalization

Example 75. (review) In Example 13, we diagonalized A=

24 4 0 2
2 2 2
1 0 3

35 as A=PDP¡1.

We found that one choice for P and D is P =

24 2 0 ¡1
2 1 0
1 0 1

35, D=

24 5 0 0
0 2 0
0 0 2

35.
Spell out what that tells us about A!

Solution. The diagonal entries 5; 2; 2 of D are the eigenvalues of A.
The columns of P are corresponding eigenvectors of A.

�
24 2
2
1

35 is a 5-eigenvector of A (that is, A
24 2
2
1

35=5

24 2
2
1

35).

� The 2-eigenspace of A is 2-dimensional. A basis is
24 0
1
0

35;
24 ¡10

1

35.

Lemma 76. A matrix A is diagonalizable if and only if, for every eigenvalue � that is k times
repeated, the �-eigenspace of A has dimension k.

In short, an n�n matrix A is diagonalizable if and only if there exists a basis of Rn consisting of eigenvectors
of A (i.e. �there are enough eigenvectors�).

The next two examples illustrate that not all matrices are diagonalizable and that, even if a
real matrix is diagonalizable, the eigenvalues and eigenvectors might be complex.

Example 77. What are the eigenvalues and eigenvectors of A=
�
0 1
0 0

�
? Is A diagonalizable?

Solution. The characteristic polynomial is det
��

¡� 1
0 ¡�

��
= �2, which has �=0 as a double root.

However, the 0-eigenspace null(A)= span
n�

1
0

�o
is only 1-dimensional.

As a consequence, A is not diagonalizable.

Example 78. What are the eigenvalues and eigenvectors of A=
�
0 ¡1
1 0

�
? Is A diagonalizable?

Solution. The characteristic polynomial is det
��

¡� ¡1
1 ¡�

��
= �2+1=(�¡ i)(�+ i).

Hence, the eigenvalues are �i.

The i-eigenspace null
��

¡i ¡1
1 ¡i

��
has basis

�
i
1

�
.

The ¡i-eigenspace null
��

i ¡1
1 i

��
has basis

�
¡i
1

�
.

Thus, A has the diagonalization A=PDP¡1 with D=
�
i
¡i

�
and P =

�
i ¡i
1 1

�
.
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The spectral theorem

Recall that a matrix A is symmetric if and only if AT =A.

Theorem 79. (spectral theorem, long version) Suppose A is a symmetric matrix.

� A is always diagonalizable.

� All eigenvalues of A are real.

� The eigenspaces of A are orthogonal.

Comment. The eigenspaces of A being orthogonal means that eigenvectors for di�erent eigenvalues are
always orthogonal.
Important consequence. In the diagonalization A=PDP¡1, we can choose P to be orthogonal (in which
case P¡1=PT). In that case, the diagonalization takes the special form A=PDPT , where P is orthogonal
and D is diagonal.

Example 80. (review) If A is a 2� 2 matrix with det(A) =¡8 and eigenvalue 4. What is
the second eigenvalue?
Solution. Recall that det(A) is the product of the eigenvalues (see below). Hence, the second eigenvalue is
¡2.

det(A) is the product of the eigenvalues of A.

Why? Recall how we determine the eigenvalues �1; �2; :::; �n of an n � n matrix A. We compute the
characteristic polynomial det(A¡�I) and determine the �i as the roots of that polynomial.
That means that we have the factorization det(A ¡ �I) = (�1¡ �)(�n ¡ �)���(�n ¡ �). Now, set �= 0 to
conclude that det(A)=�1�2����n.

Example 81.

(a) Determine the eigenspaces of the symmetric matrix A=
�
1 3
3 1

�
.

(b) Diagonalize A as A=PDPT .

Solution.

(a) The characteristic polynomial is
���� 1¡� 3

3 1¡�

����=(�¡ 4)(�+2), and so A has eigenvalues 4;¡2.

The 4-eigenspace is null
��

¡3 3
3 ¡3

��
has basis

�
1
1

�
.

The ¡2-eigenspace is null
��

3 3
3 3

��
has basis

�
¡1
1

�
.

Important observation. The 4-eigenvector
�
1
1

�
and the ¡2-eigenvector

�
¡1
1

�
are indeed orthogonal!

Review. The product of all eigenvalues ¡2 � 4=¡8 equals the determinant det(A) = 1¡ 9=¡8.

(b) Note that a usual diagonalization is of the form A=PDP¡1.
We need to choose P so that P¡1 = PT , which means that P must be orthogonal (meaning
orthonormal columns). [Choosing such a P is only possible if the eigenspaces of A are orthogonal.]

Hence, we normalize the two eigenvectors to 1

2
p

�
1
1

�
and 1

2
p

�
¡1
1

�
.

With P =
1

2
p

�
1 ¡1
1 1

�
and D=

�
4 0
0 ¡2

�
, we then have A=PDPT .
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