Review: More on diagonalization

Example 75. (review) In Example 13, we diagonalized $A=\left[\begin{array}{lll}4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3\end{array}\right]$ as $A=P D P^{-1}$.
We found that one choice for P and D is $P=\left[\begin{array}{ccc}2 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], D=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$.
Spell out what that tells us about A !
Solution. The diagonal entries $5,2,2$ of D are the eigenvalues of A.
The columns of P are corresponding eigenvectors of A.

- $\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$ is a 5 -eigenvector of A (that is, $A\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]=5\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$).
- The 2-eigenspace of A is 2-dimensional. A basis is $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.

Lemma 76. A matrix A is diagonalizable if and only if, for every eigenvalue λ that is k times repeated, the λ-eigenspace of A has dimension k.
In short, an $n \times n$ matrix A is diagonalizable if and only if there exists a basis of \mathbb{R}^{n} consisting of eigenvectors of A (i.e. "there are enough eigenvectors").

The next two examples illustrate that not all matrices are diagonalizable and that, even if a real matrix is diagonalizable, the eigenvalues and eigenvectors might be complex.

Example 77. What are the eigenvalues and eigenvectors of $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$? Is A diagonalizable? Solution. The characteristic polynomial is $\operatorname{det}\left(\left[\begin{array}{cc}-\lambda & 1 \\ 0 & -\lambda\end{array}\right]\right)=\lambda^{2}$, which has $\lambda=0$ as a double root.
However, the 0 -eigenspace $\operatorname{null}(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ is only 1 -dimensional.
As a consequence, A is not diagonalizable.

Example 78. What are the eigenvalues and eigenvectors of $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$? Is A diagonalizable?
Solution. The characteristic polynomial is $\operatorname{det}\left(\left[\begin{array}{cc}-\lambda & -1 \\ 1 & -\lambda\end{array}\right]\right)=\lambda^{2}+1=(\lambda-i)(\lambda+i)$.
Hence, the eigenvalues are $\pm i$.
The i-eigenspace null $\left(\left[\begin{array}{cc}-i & -1 \\ 1 & -i\end{array}\right]\right)$ has basis $\left[\begin{array}{l}i \\ 1\end{array}\right]$.
The $-i$-eigenspace $\operatorname{null}\left(\left[\begin{array}{cc}i & -1 \\ 1 & i\end{array}\right]\right)$ has basis $\left[\begin{array}{c}-i \\ 1\end{array}\right]$.
Thus, A has the diagonalization $A=P D P^{-1}$ with $D=\left[\begin{array}{ll}i & \\ & -i\end{array}\right]$ and $P=\left[\begin{array}{cc}i & -i \\ 1 & 1\end{array}\right]$.

Recall that a matrix A is symmetric if and only if $A^{T}=A$.
Theorem 79. (spectral theorem, long version) Suppose A is a symmetric matrix.

- A is always diagonalizable.
- All eigenvalues of A are real.
- The eigenspaces of A are orthogonal.

Comment. The eigenspaces of A being orthogonal means that eigenvectors for different eigenvalues are always orthogonal.
Important consequence. In the diagonalization $A=P D P^{-1}$, we can choose P to be orthogonal (in which case $P^{-1}=P^{T}$). In that case, the diagonalization takes the special form $A=P D P^{T}$, where P is orthogonal and D is diagonal.

Example 80. (review) If A is a 2×2 matrix with $\operatorname{det}(A)=-8$ and eigenvalue 4 . What is the second eigenvalue?
Solution. Recall that $\operatorname{det}(A)$ is the product of the eigenvalues (see below). Hence, the second eigenvalue is -2 .

$\operatorname{det}(A)$ is the product of the eigenvalues of A.

Why? Recall how we determine the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of an $n \times n$ matrix A. We compute the characteristic polynomial $\operatorname{det}(A-\lambda I)$ and determine the λ_{i} as the roots of that polynomial.
That means that we have the factorization $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{n}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$. Now, set $\lambda=0$ to conclude that $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.

Example 81.

(a) Determine the eigenspaces of the symmetric matrix $A=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$.
(b) Diagonalize A as $A=P D P^{T}$.

Solution.
(a) The characteristic polynomial is $\left|\begin{array}{cc}1-\lambda & 3 \\ 3 & 1-\lambda\end{array}\right|=(\lambda-4)(\lambda+2)$, and so A has eigenvalues $4,-2$.

The 4-eigenspace is null $\left(\left[\begin{array}{cc}-3 & 3 \\ 3 & -3\end{array}\right]\right)$ has basis $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
The -2-eigenspace is null $\left(\left[\begin{array}{ll}3 & 3 \\ 3 & 3\end{array}\right]\right)$ has basis $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
Important observation. The 4-eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and the -2-eigenvector $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ are indeed orthogonal!
Review. The product of all eigenvalues $-2 \cdot 4=-8$ equals the determinant $\operatorname{det}(A)=1-9=-8$.
(b) Note that a usual diagonalization is of the form $A=P D P^{-1}$.

We need to choose P so that $P^{-1}=P^{T}$, which means that P must be orthogonal (meaning orthonormal columns). [Choosing such a P is only possible if the eigenspaces of A are orthogonal.]
Hence, we normalize the two eigenvectors to $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
With $P=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}4 & 0 \\ 0 & -2\end{array}\right]$, we then have $A=P D P^{T}$.

