Example 66. (as at the end of last class) Determine the QR decomposition of $A=\left[\begin{array}{lll}0 & 2 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$.
Solution. (using Sage)
Sage] $A=\operatorname{matrix}([[0,2,1],[3,1,1],[0,0,1],[0,0,1]])$
Sage] $A=\operatorname{matrix}(Q Q b a r,[[0,2,1],[3,1,1],[0,0,1],[0,0,1]])$
Sage] A.QR(full=false)

$$
\left(\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0.7071067811865475 ? \\
0 & 0 & 0.7071067811865475 ?
\end{array}\right],\left[\begin{array}{rrr}
3 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1.414213562373095 ?
\end{array}\right]\right)
$$

Comment. Can you figure out what happens if you omit the full=false? Check out the comment under Variations for the QR decomposition in the previous lecture sketch. On the other hand, the QQbar is telling Sage to compute with algebraic numbers (instead of just rational numbers); if omitted, it would complain that square roots are not available.

Example 67. Determine the QR decomposition of $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & 0 & -5 \\ 0 & 3 & 6\end{array}\right]$.
Solution. We first apply Gram-Schmidt orthonormalization to the columns of A.

- $\boldsymbol{b}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, so that $\boldsymbol{q}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
- $\boldsymbol{b}_{2}=\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right]-\left(\left[\begin{array}{l}2 \\ 0 \\ 3\end{array}\right] \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}=\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$, so that $\boldsymbol{q}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
- $\boldsymbol{b}_{3}=\left[\begin{array}{c}4 \\ -5 \\ 6\end{array}\right]-\left(\left[\begin{array}{c}4 \\ -5 \\ 6\end{array}\right] \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}-\left(\left[\begin{array}{c}4 \\ -5 \\ 6\end{array}\right] \cdot \boldsymbol{q}_{2}\right) \boldsymbol{q}_{2}=\left[\begin{array}{c}0 \\ -5 \\ 0\end{array}\right]$, so that $\boldsymbol{q}_{3}=\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]$.

Therefore, $Q=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$. Finally, $R=Q^{T} A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & 0 & -5 \\ 0 & 3 & 6\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5\end{array}\right]$.
In conclusion, we have found the QR decomposition: $\underbrace{\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & 0 & -5 \\ 0 & 3 & 6\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5\end{array}\right]}_{Q}$
Comment. As noted before, we actually could write down R without any additional computation. Indeed, realize that the second column of R, that is $[2,3,0]^{T}$ means that

$$
2 \text { nd col of } A=2 \boldsymbol{q}_{1}+3 \boldsymbol{q}_{2} .
$$

Which we already knew from our computation of \boldsymbol{q}_{2} ! Also, by construction, we know that the second column of A is a linear combination of \boldsymbol{q}_{1} and \boldsymbol{q}_{2} only, and that \boldsymbol{q}_{3} enters the story later on. This corresponds to the fact that R is always upper triangular.

Letting Sage do the work for us.
Sage] A = matrix(QQbar, $[[1,2,4],[0,0,-5],[0,3,6]])$
Sage] A. QR()
$\left(\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right],\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 3 & 6 \\ 0 & 0 & 5\end{array}\right]\right)$

Example 68. (review) A matrix A has orthonormal columns $\Longleftrightarrow A^{T} A=I$.
Definition 69. An orthogonal matrix is a square matrix with orthonormal columns.
[This is not a typo (but a confusing convention): the columns need to be orthonormal, not just orthogonal.]

An $n \times n$ matrix Q is orthogonal $\Longleftrightarrow Q^{T} Q=I$
In other words, $Q^{-1}=Q^{T}$.

