Example 61. Using Gram-Schmidt, find an orthogonal basis for $W=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$. Solution. We begin with the (not orthogonal) basis $\boldsymbol{w}_{1}=\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 0\end{array}\right], \boldsymbol{w}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right], \boldsymbol{w}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$.
We then construct an orthogonal basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ as follows:

- $\boldsymbol{q}_{1}=\boldsymbol{w}_{1}=\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 0\end{array}\right]$
- $\boldsymbol{q}_{2}=\boldsymbol{w}_{2}-\binom{$ projection of }{$\boldsymbol{w}_{2}$ onto $\boldsymbol{q}_{1}}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]-\frac{3}{9}\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]$
- $\boldsymbol{q}_{3}=\boldsymbol{w}_{3}-\binom{$ projection of $\boldsymbol{w}_{3}}{$ onto span $\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}}=\boldsymbol{w}_{3}-\binom{$ projection of }{$\boldsymbol{w}_{3}$ onto $\boldsymbol{q}_{1}}-\binom{$ projection of }{$\boldsymbol{w}_{3}$ onto $\boldsymbol{q}_{2}}$

$$
=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{3}{9}\left[\begin{array}{l}
0 \\
3 \\
0 \\
0
\end{array}\right]-\frac{2}{4}\left[\begin{array}{l}
2 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Make sure you see why $\boldsymbol{q}_{3}$ is orthogonal to both $\boldsymbol{q}_{1}$ and $\boldsymbol{q}_{2}$ !
Also note that breaking up the projection onto $\operatorname{span}\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}$ into the projections onto $\boldsymbol{q}_{1}$ and $\boldsymbol{q}_{2}$ is only possible because $\boldsymbol{q}_{1}$ and $\boldsymbol{q}_{2}$ are orthogonal.

Indeed, $\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ is an orthogonal basis of $\mathbb{R}^{3}$.
If we prefer, we can normalize to obtain an orthonormal basis: $\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$.
It is common and beneficial (slightly less work) to normalize during the Gram-Schmidt process. We do this in Example 62 below.

The following is just the Gram-Schmidt orthogonalization except that we immediately normalize each vector $\boldsymbol{q}_{i}$.

## (Gram-Schmidt orthonormalization)

Given a basis $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots$ for $W$, produce an orthonormal basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots$ for $W$.

- $\boldsymbol{q}_{1}=\frac{\boldsymbol{b}_{1}}{\left\|\boldsymbol{b}_{1}\right\|}$ with $\boldsymbol{b}_{1}=\boldsymbol{w}_{1}$
- $\boldsymbol{q}_{2}=\frac{\boldsymbol{b}_{2}}{\left\|\boldsymbol{b}_{2}\right\|}$ with $\boldsymbol{b}_{2}=\boldsymbol{w}_{2}-\left(\boldsymbol{w}_{2} \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}$
- $\boldsymbol{q}_{3}=\frac{\boldsymbol{b}_{3}}{\left\|b_{3}\right\|}$ with $\boldsymbol{b}_{3}=\boldsymbol{w}_{3}-\left(\boldsymbol{w}_{3} \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}-\left(\boldsymbol{w}_{3} \cdot \boldsymbol{q}_{2}\right) \boldsymbol{q}_{2}$
- $\boldsymbol{q}_{4}=\ldots$

Example 62. Find an orthonormal basis for $W=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$.
Solution. Let $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ be the vectors spaning $W$. We then construct an orthonormal basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}$ using Gram-Schmidt orthonormalization as follows:

- $\boldsymbol{b}_{1}=\left[\begin{array}{l}0 \\ 3 \\ 0 \\ 0\end{array}\right]$, so that $\boldsymbol{q}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$.
- $\boldsymbol{b}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]-\left(\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right] \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]$, so that $\boldsymbol{q}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$.
- $\boldsymbol{b}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]-\left(\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \cdot \boldsymbol{q}_{1}\right) \boldsymbol{q}_{1}-\left(\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right] \cdot \boldsymbol{q}_{2}\right) \boldsymbol{q}_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$, so that $\boldsymbol{q}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$.

We have found the orthonormal basis: $\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ (which, of course, matches the previous example).

A matrix $Q$ has orthonormal columns $\Longleftrightarrow Q^{T} Q=I$

Why? Let $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots$ be the columns of $Q$. By the way matrix multiplication works, the entries of $Q^{T} Q$ are dot products of these columns:

$$
\left[\begin{array}{ccc}
- & \boldsymbol{q}_{1}^{T} & - \\
- & \boldsymbol{q}_{2}^{T} & - \\
\vdots & \vdots
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
\boldsymbol{q}_{1} & \boldsymbol{q}_{2}
\end{array}\right] .
$$

Hence, $Q^{T} Q=I$ if and only if the dot products $\boldsymbol{q}_{i}^{T} \boldsymbol{q}_{j}=0$ (that is, the columns are orthogonal), for $i \neq j$, and $\boldsymbol{q}_{i}^{T} \boldsymbol{q}_{i}=1$ (that is, the columns are normalized).

Example 63. $Q=\left[\begin{array}{llc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 / \sqrt{2} \\ 0 & 0 & 1 / \sqrt{2}\end{array}\right]$ obtained from the previous example satisfies $Q^{T} Q=I$.

## The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition encodes the steps of Gram-Schmidt.
(QR decomposition) Every $m \times n$ matrix $A$ of rank $n$ can be decomposed as $A=Q R$, where

- $\quad Q$ has orthonormal columns,
- $\quad R$ is upper triangular and invertible.

How to find $Q$ and $R$ ?

- Gram-Schmidt orthonormalization on (columns of) $A$, to get (columns of) $Q$
- $\quad R=Q^{T} A$

Why? If $A=Q R$, then $Q^{T} A=Q^{T} Q R$ which simplifies to $R=Q^{T} A$ (since $Q^{T} Q=I$ ).
The decomposition $A=Q R$ is unique if we require the diagonal entries of $R$ to be positive (and this is exactly what happens when applying Gram-Schmidt).
Practical comment. Actually, no extra work is needed for computing $R$. All of its entries have been computed during Gram-Schmidt.
Variations. We can also arrange things so that $Q$ is an $m \times m$ orthogonal matrix and $R$ a $m \times n$ upper triangular matrix. This is a tiny bit more work (and not required for many applications): we need to complement "our" $Q$ with additional orthonormal columns and add corresponding zero rows to $R$. For square matrices this makes no difference.

Example 64. Determine the $Q R$ decomposition of $A=\left[\begin{array}{lll}0 & 2 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$.
Solution. The first step is Gram-Schmidt orthonormalization on the columns of $A$. We then use the resulting orthonormal vectors as the columns of $Q$.
We already did Gram-Schmidt in Example 62: from that work, we have $Q=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 / \sqrt{2} \\ 0 & 0 & 1 / \sqrt{2}\end{array}\right]$.
Hence, $R=Q^{T} A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{lll}0 & 2 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & \sqrt{2}\end{array}\right]$.
Comment. As commented earlier, the entries of $R$ have actually all been computed during Gram-Schmidt, so that, if we pay attention, we could immediately write down $R$ (no extra work required). Looking back at Example 62, can you see this?
Check. Indeed, $Q R=\left[\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 / \sqrt{2} \\ 0 & 0 & 1 / \sqrt{2}\end{array}\right]\left[\begin{array}{ccc}3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & \sqrt{2}\end{array}\right]=\left[\begin{array}{lll}0 & 2 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$ equals $A$.

Example 65. (extra) Find the QR decomposition of $A=\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$.
Solution. (final answer only) $A=Q R$ with $Q=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\end{array}\right]$ and $R=\left[\begin{array}{ccc}\sqrt{2} & \frac{1}{\sqrt{2}} & \sqrt{2} \\ 0 & \frac{1}{\sqrt{2}} & \sqrt{2} \\ 0 & 0 & 1\end{array}\right]$.

