**Solution.** We begin with the (not orthogonal) basis  $\boldsymbol{w}_1 = \begin{bmatrix} 0\\3\\0\\0 \end{bmatrix}$ ,  $\boldsymbol{w}_2 = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix}$ ,  $\boldsymbol{w}_3 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ .

We then construct an orthogonal basis  $q_1, q_2, q_3$  as follows:

•  $q_1 = w_1 = \begin{vmatrix} 0 \\ 3 \\ 0 \\ 0 \end{vmatrix}$ •  $\boldsymbol{q}_2 = \boldsymbol{w}_2 - \begin{pmatrix} \text{projection of} \\ \boldsymbol{w}_2 \text{ onto } \boldsymbol{q}_1 \end{pmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} - \frac{3}{9} \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ •  $q_3 = w_3 - \begin{pmatrix} \text{projection of } w_3 \\ \text{onto span}\{q_1, q_2\} \end{pmatrix} = w_3 - \begin{pmatrix} \text{projection of} \\ w_3 \text{ onto } q_1 \end{pmatrix} - \begin{pmatrix} \text{projection of} \\ w_3 \text{ onto } q_2 \end{pmatrix}$ =  $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{9} \begin{bmatrix} 0 \\ 3 \\ 0 \\ 0 \end{bmatrix} - \frac{2}{4} \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ 

Make sure you see why  $q_3$  is orthogonal to both  $q_1$  and  $q_2$ !

Also note that breaking up the projection onto span{ $q_1, q_2$ } into the projections onto  $q_1$  and  $q_2$  is only possible because  $q_1$  and  $q_2$  are orthogonal.



Indeed,  $\begin{bmatrix} 3\\0\\0\end{bmatrix}$ ,  $\begin{bmatrix} 0\\0\\0\end{bmatrix}$ ,  $\begin{bmatrix} 0\\0\\1\end{bmatrix}$  is an orthogonal basis of  $\mathbb{R}^3$ .

If we prefer, we can normalize to obtain an orthonormal bas

| $\mathbf{sis:} \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$ | $\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}.$ |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|

It is common and beneficial (slightly less work) to normalize during the Gram-Schmidt process. We do this in Example 62 below.

The following is just the Gram–Schmidt orthogonalization except that we immediately normalize each vector  $q_i$ .

(Gram-Schmidt orthonormalization) Given a basis  $w_1, w_2, \dots$  for W, produce an orthonormal basis  $q_1, q_2, \dots$  for W. •  $\boldsymbol{q}_1 = \frac{\boldsymbol{b}_1}{\|\boldsymbol{b}_1\|}$  with  $\boldsymbol{b}_1 = \boldsymbol{w}_1$ •  $q_2 = \frac{b_2}{\|b_2\|}$  with  $b_2 = w_2 - (w_2 \cdot q_1)q_1$ •  $q_3 = \frac{b_3}{\|b_3\|}$  with  $b_3 = w_3 - (w_3 \cdot q_1)q_1 - (w_3 \cdot q_2)q_2$ 

 $\boldsymbol{q}_4 = \dots$ 

**Example 62.** Find an orthonormal basis for  $W = \operatorname{span}\left\{ \begin{bmatrix} 0\\3\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \right\}.$ 

**Solution.** Let  $w_1, w_2, w_3$  be the vectors spaning W. We then construct an orthonormal basis  $q_1, q_2, q_3$  using Gram-Schmidt orthonormalization as follows:

- $\boldsymbol{b}_1 = \begin{bmatrix} 0\\3\\0\\0 \end{bmatrix}$ , so that  $\boldsymbol{q}_1 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$ .
- $\boldsymbol{b}_2 = \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} \left( \begin{bmatrix} 2\\1\\0\\0 \end{bmatrix} \cdot \boldsymbol{q}_1 \right) \boldsymbol{q}_1 = \begin{bmatrix} 2\\0\\0\\0 \end{bmatrix}$ , so that  $\boldsymbol{q}_2 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$ .
- $\boldsymbol{b}_3 = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \left( \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \cdot \boldsymbol{q}_1 \right) \boldsymbol{q}_1 \left( \begin{bmatrix} 1\\1\\1\\1\\1\\1 \end{bmatrix} \cdot \boldsymbol{q}_2 \right) \boldsymbol{q}_2 = \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix}, \text{ so that } \boldsymbol{q}_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix}.$

We have found the orthonormal basis:  $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \frac{1}{\sqrt{2}}\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$  (which, of course, matches the previous example).

A matrix Q has orthonormal columns  $\iff Q^T Q = I$ 

Why? Let  $q_1, q_2, ...$  be the columns of Q. By the way matrix multiplication works, the entries of  $Q^T Q$  are dot products of these columns:

 $\begin{bmatrix} - & \boldsymbol{q}_1^T & - \\ - & \boldsymbol{q}_2^T & - \\ \vdots & \vdots & \end{bmatrix} \begin{bmatrix} | & | & \\ \boldsymbol{q}_1 & \boldsymbol{q}_2 & \cdots \\ | & | & \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \ddots \end{bmatrix}$ 

Hence,  $Q^T Q = I$  if and only if the dot products  $q_i^T q_j = 0$  (that is, the columns are orthogonal), for  $i \neq j$ , and  $q_i^T q_i = 1$  (that is, the columns are normalized).

**Example 63.**  $Q = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$  obtained from the previous example satisfies  $Q^T Q = I$ .

## The QR decomposition

Just like the LU decomposition encodes the steps of Gaussian elimination, the QR decomposition encodes the steps of Gram–Schmidt.

| (QR decomposition) Every $m \times n$ matrix A of rank n can be decomposed as $A = QR$ , where |                                       | ₿, where    |
|------------------------------------------------------------------------------------------------|---------------------------------------|-------------|
| •                                                                                              | Q has orthonormal columns,            | (m 	imes n) |
| ٠                                                                                              | R is upper triangular and invertible. | (n 	imes n) |

How to find Q and R?

- Gram–Schmidt orthonormalization on (columns of) A, to get (columns of) Q
- $R = Q^T A$ Why? If A = QR, then  $Q^T A = Q^T QR$  which simplifies to  $R = Q^T A$  (since  $Q^T Q = I$ ).

The decomposition A = QR is unique if we require the diagonal entries of R to be positive (and this is exactly what happens when applying Gram–Schmidt).

**Practical comment.** Actually, no extra work is needed for computing R. All of its entries have been computed during Gram–Schmidt.

**Variations.** We can also arrange things so that Q is an  $m \times m$  orthogonal matrix and R a  $m \times n$  upper triangular matrix. This is a tiny bit more work (and not required for many applications): we need to complement "our" Q with additional orthonormal columns and add corresponding zero rows to R. For square matrices this makes no difference.

**Example 64.** Determine the QR decomposition of  $A = \begin{bmatrix} 0 & 2 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ .

**Solution.** The first step is Gram–Schmidt orthonormalization on the columns of A. We then use the resulting orthonormal vectors as the columns of Q.

We already did Gram–Schmidt in Example 62: from that work, we have  $Q = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix}$ . Hence,  $R = Q^T A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 0 & 2 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$ .

**Comment.** As commented earlier, the entries of R have actually all been computed during Gram–Schmidt, so that, if we pay attention, we could immediately write down R (no extra work required). Looking back at Example 62, can you see this?

**Check.** Indeed,  $QR = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1/\sqrt{2} \\ 0 & 0 & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & \sqrt{2} \end{bmatrix} = \begin{bmatrix} 0 & 2 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$  equals A.

**Example 65. (extra)** Find the QR decomposition of  $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ .

Solution. (final answer only) 
$$A = QR$$
 with  $Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{bmatrix}$  and  $R = \begin{bmatrix} \sqrt{2} & \frac{1}{\sqrt{2}} & \sqrt{2}\\ 0 & \frac{1}{\sqrt{2}} & \sqrt{2}\\ 0 & 0 & 1 \end{bmatrix}$ .