Review. If $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ are orthogonal, the orthogonal projection of \boldsymbol{w} onto $\operatorname{span}\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ is

$$
\hat{\boldsymbol{w}}=\frac{\boldsymbol{w} \cdot \boldsymbol{v}_{1}}{\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{1}} \boldsymbol{v}_{1}+\ldots+\frac{\boldsymbol{w} \cdot \boldsymbol{v}_{n}}{\boldsymbol{v}_{n} \cdot \boldsymbol{v}_{n}} \boldsymbol{v}_{n}
$$

Example 59. Determine the projection of $\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]$ onto $W=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.
Comment. We know how to do this using least squares.
However, realizing that $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ are orthogonal makes things even easier.
Solution. (using orthogonality) As in Example 58, the projection of $\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]$ onto $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ is $-2\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ and the projection of $\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]$ onto $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is $4\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Hence, the orthogonal projection of $\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]$ onto $W=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ is $-2\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]+4\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{c}-2 \\ 2 \\ 4\end{array}\right]$. Important note. Note that, at this point, we can easily extend $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ to an orthogonal basis of \mathbb{R}^{3} : That is because the error $\left[\begin{array}{l}3 \\ 7 \\ 4\end{array}\right]-\left[\begin{array}{c}-2 \\ 2 \\ 4\end{array}\right]=\left[\begin{array}{l}5 \\ 5 \\ 0\end{array}\right]$ is orthogonal to both of the existing basis vectors.
Therefore $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 5 \\ 0\end{array}\right]$ is an orthogonal basis of \mathbb{R}^{3}.

Gram-Schmidt

This idea (see "important note" above) for creating orthogonal vectors underlies Gram-Schmidt:

(Gram-Schmidt orthogonalization)

Given a basis $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots$ for W, produce an orthogonal basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots$ for W.

- $\boldsymbol{q}_{1}=\boldsymbol{w}_{1}$
- $\boldsymbol{q}_{2}=\boldsymbol{w}_{2}-\binom{$ projection of }{\boldsymbol{w}_{2} onto $\boldsymbol{q}_{1}}$
- $\boldsymbol{q}_{3}=\boldsymbol{w}_{3}-\binom{$ projection of }{\boldsymbol{w}_{3} onto $\boldsymbol{q}_{1}}-\binom{$ projection of }{\boldsymbol{w}_{3} onto $\boldsymbol{q}_{2}}$
- $\boldsymbol{q}_{4}=\ldots$

Comment. Since $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}$ are orthogonal, $\binom{$ projection of }{\boldsymbol{w}_{3} onto $\operatorname{span}\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}}=\binom{$ projection of }{\boldsymbol{w}_{3} onto $\boldsymbol{q}_{1}}+\binom{$ projection of }{\boldsymbol{w}_{3} onto $\boldsymbol{q}_{2}}$. Important comment. When working numerically it actually saves time to compute an orthonormal basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots$ by the same approach but always normalizing each \boldsymbol{q}_{i} along the way. The reason this saves time is that now the projections onto q_{i} only require a single dot product (instead of two). This is called GramSchmidt orthonormalization.
Note. When normalizing, the orthonormal basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}, \ldots$ is the unique one with the property that $\operatorname{span}\left\{\boldsymbol{q}_{1}\right.$, $\left.\boldsymbol{q}_{2}, \ldots, \boldsymbol{q}_{k}\right\}=\operatorname{span}\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{k}\right\}$ for all $k=1,2, \ldots$

Example 60. Find an orthogonal basis for $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$.
Solution. We already have the basis $\boldsymbol{w}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \boldsymbol{w}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ for W. However, that basis is not orthogonal.
We can construct an orthogonal basis $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}$ for W as follows:

- $\boldsymbol{q}_{1}=\boldsymbol{w}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Since this is our first basis vector, we don't yet have other basis vectors it needs to be orthogonal to.

- $\boldsymbol{q}_{2}=\boldsymbol{w}_{2}-\binom{$ projection of }{\boldsymbol{w}_{2} onto $\boldsymbol{q}_{1}}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]-\frac{1}{3}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}2 / 3 \\ -4 / 3 \\ 2 / 3\end{array}\right]$

Make sure our way to construct \boldsymbol{q}_{2} makes sense to you! \boldsymbol{q}_{2} is the error of the projection of \boldsymbol{w}_{2} onto \boldsymbol{q}_{1}. This guarantees that it is orthogonal to \boldsymbol{q}_{1}.
On the other hand, since \boldsymbol{q}_{2} is a combination of \boldsymbol{w}_{2} and \boldsymbol{q}_{1}, we know that \boldsymbol{q}_{2} actually is in W.
We have thus found the orthogonal basis $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}2 / 3 \\ -4 / 3 \\ 2 / 3\end{array}\right]$ for W.
Important comment. Normalizing these, we get $\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$, which is an orthonormal basis for W.
Comment. There are, of course, many orthogonal bases $\boldsymbol{q}_{1}, \boldsymbol{q}_{2}$ for W. Up to the length of the vectors, ours is the unique one with the property that $\operatorname{span}\left\{\boldsymbol{q}_{1}\right\}=\operatorname{span}\left\{\boldsymbol{w}_{1}\right\}$ and $\operatorname{span}\left\{\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right\}=\operatorname{span}\left\{\boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$.

