Review. If $v_1, ..., v_n$ are orthogonal, the orthogonal projection of w onto $\operatorname{span}\{v_1, ..., v_n\}$ is

$$\hat{oldsymbol{w}}=rac{oldsymbol{w}\cdotoldsymbol{v}_1}{oldsymbol{v}_1\cdotoldsymbol{v}_1}\,oldsymbol{v}_1+\ldots+rac{oldsymbol{w}\cdotoldsymbol{v}_n}{oldsymbol{v}_n\cdotoldsymbol{v}_n}\,oldsymbol{v}_n.$$

Example 59. Determine the projection of $\begin{bmatrix} 3\\7\\4 \end{bmatrix}$ onto $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$.

Comment. We know how to do this using least squares. However, realizing that $\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix}$ are orthogonal makes things even easier.

Solution. (using orthogonality) As in Example 58, the projection of $\begin{bmatrix} 3\\7\\4 \end{bmatrix}$ onto $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$ is $-2\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$ and the projection of $\begin{bmatrix} 3\\7\\4 \end{bmatrix}$ onto $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Hence, the orthogonal projection of $\begin{bmatrix} 3\\7\\4 \end{bmatrix}$ onto $W = \operatorname{span}\left\{\begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}\right\}$ is $-2\begin{bmatrix} 1\\-1\\0 \end{bmatrix} + 4\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} -2\\2\\4 \end{bmatrix}$.

Important note. Note that, at this point, we can easily extend $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$ to an orthogonal basis of \mathbb{R}^3 : That is because the error $\begin{bmatrix} 3\\7\\4 \end{bmatrix} - \begin{bmatrix} -2\\2\\4 \end{bmatrix} = \begin{bmatrix} 5\\5\\0 \end{bmatrix}$ is orthogonal to both of the existing basis vectors. Therefore $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 5\\5\\0 \end{bmatrix}$ is an orthogonal basis of \mathbb{R}^3 .

Gram-Schmidt

This idea (see "important note" above) for creating orthogonal vectors underlies Gram-Schmidt:

(Gram-Schmidt orthogonalization)

Given a basis $w_1, w_2, ...$ for W, produce an orthogonal basis $q_1, q_2, ...$ for W.

• $q_1 = w_1$ • $q_2 = w_2 - \begin{pmatrix} \text{projection of} \\ w_2 \text{ onto } q_1 \end{pmatrix}$ • $q_3 = w_3 - \begin{pmatrix} \text{projection of} \\ w_3 \text{ onto } q_1 \end{pmatrix} - \begin{pmatrix} \text{projection of} \\ w_3 \text{ onto } q_2 \end{pmatrix}$

Comment. Since q_1, q_2 are orthogonal, $\begin{pmatrix} \text{projection of} \\ w_3 \text{ onto span}\{q_1, q_2\} \end{pmatrix} = \begin{pmatrix} \text{projection of} \\ w_3 \text{ onto } q_1 \end{pmatrix} + \begin{pmatrix} \text{projection of} \\ w_3 \text{ onto } q_2 \end{pmatrix}$

Important comment. When working numerically it actually saves time to compute an orthonormal basis $q_1, q_2, ...$ by the same approach but always normalizing each q_i along the way. The reason this saves time is that now the projections onto q_i only require a single dot product (instead of two). This is called **Gram-Schmidt orthonormalization**.

Note. When normalizing, the orthonormal basis $q_1, q_2, ...$ is the unique one with the property that span{ $q_1, q_2, ..., q_k$ } = span{ $w_1, w_2, ..., w_k$ } for all k = 1, 2, ...

 $q_4 = ...$

Example 60. Find an orthogonal basis for $W = \operatorname{span}\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix} \right\}$.

Solution. We already have the basis $\boldsymbol{w}_1 = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}$, $\boldsymbol{w}_2 = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$ for W. However, that basis is not orthogonal. We can construct an orthogonal basis $\boldsymbol{q}_1, \boldsymbol{q}_2$ for W as follows:

• $\boldsymbol{q}_1 = \boldsymbol{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Since this is our first basis vector, we don't yet have other basis vectors it needs to be orthogonal to.

• $\boldsymbol{q}_2 = \boldsymbol{w}_2 - \begin{pmatrix} \text{projection of} \\ \boldsymbol{w}_2 \text{ onto } \boldsymbol{q}_1 \end{pmatrix} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2/3 \\ -4/3 \\ 2/3 \end{bmatrix}$

Make sure our way to construct q_2 makes sense to you!

 q_2 is the error of the projection of w_2 onto q_1 . This guarantees that it is orthogonal to q_1 .

On the other hand, since q_2 is a combination of w_2 and q_1 , we know that q_2 actually is in W.

We have thus found the orthogonal basis $\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2/3\\-4/3\\2/3 \end{bmatrix}$ for W.

Important comment. Normalizing these, we get $\frac{1}{\sqrt{3}}\begin{bmatrix}1\\1\\1\end{bmatrix}, \frac{1}{\sqrt{6}}\begin{bmatrix}1\\-2\\1\end{bmatrix}$, which is an orthonormal basis for W.

Comment. There are, of course, many orthogonal bases q_1, q_2 for W. Up to the length of the vectors, ours is the unique one with the property that $\operatorname{span}\{q_1\} = \operatorname{span}\{w_1\}$ and $\operatorname{span}\{q_1, q_2\} = \operatorname{span}\{w_1, w_2\}$.