
Sketch of Lecture 10 Fri, 2/2/2018

Review. The projection matrix for projecting onto col(A) is P =A(ATA)¡1AT .

Lemma 50. If the columns of a matrix A are independent, then ATA is invertible.

Proof. Assume ATA is not invertible, so that ATAx=0 for some x=/ 0. Multiply both sides with xT to get

xTATAx=(Ax)TAx= kAxk2=0;

which implies thatAx=0. Since the columns of A are independent, this shows that x=0. A contradiction! �

Example 51. If P is a projection matrix, then what is P 2?

For instance. For P as in Example 49, P 2= 1

4

24 1 0 1
0 2 0
1 0 1

352= 1

2

24 1 0 1
0 2 0
1 0 1

35=P .

Solution. Can you see why it is always true that P 2=P?
[Recall that P projects a vector onto a spaceW (actually,W = col(P )). Hence P 2 takes a vector b, projects
it onto W to get b̂, and then projects b̂ onto W again. But the projection of b̂ onto W is just b̂ (why?!),
so that P 2 always has the exact same e�ect as P . Therefore, P 2=P .]

Example 52. True or false? If P is the matrix for projecting onto W , then W = col(P ).

Solution. True!
Why? The columns of P are the projections of the standard basis vectors and hence in W . On the other
hand, for any vector w in W , we have Pw=w so that w is a combination of the columns of P .
[This may take several readings to digest but do read (or ask) until it makes sense!]

In particular. rank(P ) =dimW (because, for any matrix, rank(A)=dimcol(A))

Review.

� Vectors v1; :::; vn are linearly independent.

() c1v1+ :::+ cnvn=0 only has the (trivial) solution c1= c2= :::= cn=0.

� Vectors v1; :::; vn are a basis for V .

() V = spanfv1; :::;vng and v1; :::;vn are linearly independent.

() Any vector w in V can be written as w= c1v1+ :::+ cnvn in a unique way.

The latter is the practical reason why we care so much about bases!
V could be some abstract vector space (of polynomials or Fourier series), meaning that vectors are
abstract objects and not just our usual column vectors. However, as soon as we pick a basis of V ,
then we can represent every (abstract) vector w by the (usual) column vector (c1; c2; :::; cn)T .
This means all of our results can be used, too, when working with these abstract spaces!
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Orthogonal bases

Theorem 53. Suppose that v1; :::; vn are nonzero and pairwise orthogonal. Then v1; :::; vn
are linearly independent.

Proof. Suppose that

c1v1+ :::+ cnvn=0:

Take the dot product of v1 with both sides:

0 = v1 � (c1v1+ :::+ cnvn)

= c1v1 �v1+ c2v1 �v2+ :::+ cnv1 �vn
= c1v1 �v1= c1kv1k2

But kv1k=/ 0 and hence c1=0.
Likewise, we �nd c2=0, :::, cn=0. Hence, the vectors are independent. �

Comment. Note that this result is intuitively obvious: if the vectors were linearly dependent, then one of
them could be written as a linear combination of the others. However, all these other vectors (and hence any
combination of them) are orthogonal to it.

De�nition 54. A basis v1; :::; vn of a vector space V is an orthogonal basis if the vectors
are (pairwise) orthogonal. If, in addition, the basis vectors have length 1, then this is called an
orthonormal basis.

Example 55. The standard basis
24 1
0
0

35;
24 0
1
0

35;
24 0
0
1

35 is an orthonormal basis for R3.

Example 56. Are the vectors
24 1
¡1
0

35;
24 1
1
0

35;
24 0
0
1

35an orthogonal basis for R3? Is it orthonormal?

Solution.
24 1
¡1
0

35�
24 1
1
0

35=0,
24 1
¡1
0

35�
24 0
0
1

35=0,
24 1
1
0

35�
24 0
0
1

35=0.

So, this is an orthogonal basis.
Note that we do not need to check that the three vectors are independent. That follows from their orthog-
onality (see Theorem 53).
On the other hand, the vectors do not all have length 1, so that this basis is not orthonormal.

Normalize the vectors to produce an orthonormal basis.

Solution.24 1
¡1
0

35 has length
24 1
¡1
0

35�
24 1
¡1
0

35
s

= 2
p

=) normalized: 1

2
p

24 1
¡1
0

35
24 1
1
0

35 has length
24 1
1
0

35�
24 1
1
0

35
s

= 2
p

=) normalized: 1

2
p

24 1
1
0

35
24 0
0
1

35 has length
24 0
0
1

35�
24 0
0
1

35
s

=1 =) is already normalized:
24 0
0
1

35
The resulting orthonormal basis is 1

2
p

24 1
¡1
0

35; 1

2
p

24 1
1
0

35;
24 0
0
1

35.
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Lemma 57. (orthogonal projection if we have an orthogonal basis)
If v1; :::;vn are orthogonal, then the orthogonal projection of w onto spanfv1; :::;vng is

ŵ=
w � v1
v1 � v1

v1

proj of w
onto v1

+ :::+
w �vn
vn �vn

vn

proj of w
onto vn

:

Note. In other words, w decomposes as the sum of its projections onto each basis vector.
Note. If v1; :::;vn is an orthonormal basis, then the denominators are all 1.
Important consequence. If v1; :::;vn is an orthogonal basis of V , and w is in V , then

w= c1v1+ :::+ cnvn with cj=
w �vj
vj �vj

:

If the v1; :::; vn are a basis, but not orthogonal, then we have to solve a system of equations to �nd the ci.
That is a lot more work than simply computing a few dot products.

Proof. It su�ces to show that the error w¡ ŵ is orthogonal to each vi. Indeed:

(w¡ ŵ) �vi=
�
w¡ w �v1

v1 �v1
v1¡ :::¡ w �vn

vn �vn
vn

�
�vi=w �vi¡

w �vi
vi �vi

vi �vi=0:

�

Example 58. Express

24 3
7
4

35
x

in terms of the basis

24 1
¡1
0

35
v1

;

24 1
1
0

35
v2

;

24 0
0
1

35
v3

.

Solution. Because v1;v2;v3 is an orthogonal basis of R3, we get:24 3
7
4

35 = c1

24 1
¡1
0

35+ c2

24 1
1
0

35+ c3

24 0
0
1

35

=

24 3
7
4

35�
24 1
¡1
0

35
24 1
¡1
0

35�
24 1
¡1
0

35

24 1
¡1
0

35
projection of x onto v1

+

24 3
7
4

35�
24 1
1
0

35
24 1
1
0

35�
24 1
1
0

35

24 1
1
0

35
projection of x onto v2

+

24 3
7
4

35�
24 0
0
1

35
24 0
0
1

35�
24 0
0
1

35

24 0
0
1

35
projection of x onto v3

=
¡4
2

24 1
¡1
0

35+ 10
2

24 1
1
0

35+ 4

1

24 0
0
1

35
Because we spelled out all the details this looks more involved than it is. We only computed 6 dot products!

Alternative. We could have solved
24 1 1 0
¡1 1 0
0 0 1

3524 c1
c2
c3

35=
24 3
7
4

35 to also �nd
24 c1
c2
c3

35=
24 ¡25

4

35.
The numbers are particularly easy here but in general, to �nd this solution, we have to go through the entire
process of Gaussian elimination. On the other hand, if we have an orthogonal basis, the former approach
requires less work, because it is just computing a few dot products.
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