Example 39. Find the least squares solution to Ax = b, where

 $A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.$ Solution. First, $A^T A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}$ and $A^T \mathbf{b} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}.$ Hence, the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ take the form $\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \hat{\mathbf{x}} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}.$ Solving, we immediately find $\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \\ -8 \end{bmatrix}$ is indeed orthogonal to col(A). Because $\begin{bmatrix} 2 \\ 4 \\ -8 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix} = 0$ and $\begin{bmatrix} 2 \\ 4 \\ -8 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = 0.$

Definition 40. The (orthogonal) projection \hat{b} of a vector b onto a subspace Y is the vector in Y closest to b.

The (orthogonal) projection $\hat{\boldsymbol{b}}$ of \boldsymbol{b} onto $\operatorname{col}(A)$ is $\hat{\boldsymbol{b}} = A\hat{\boldsymbol{x}}$. Here, $\hat{\boldsymbol{x}}$ is a least squares solution to $A\boldsymbol{x} = \boldsymbol{b}$ (i.e. $\hat{\boldsymbol{x}}$ solves $A^T A \hat{\boldsymbol{x}} = A^T \boldsymbol{b}$).

Why? Why is $A\hat{x}$ the projection of **b** onto col(A)?

Because, for a least squares solution \hat{x} , $A\hat{x} - b$ is as small as possible (and any element in col(A) is of the form Ax for some x).

Note. This is a recipe for computing any orthogonal projection! That's because every subspace Y can be written as col(A) for some choice of the matrix A (take, for instance, A so that its columns are a basis for Y).

Example 41. What is the orthogonal projection of $\begin{bmatrix} 2\\0\\11 \end{bmatrix}$ onto span $\left\{ \begin{bmatrix} 4\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right\}$?

Solution. This is the same question as: what is the projection of b onto col(A), with A and b as in the previous example.

The projection of **b** onto $\operatorname{Col}(A)$ is $A\hat{\boldsymbol{x}} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}.$

Example 42. (extra homework)

- (a) What is the orthogonal projection of $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$ onto span $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix} \right\}$?
- (b) What is the orthogonal projection of $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$ onto span $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$?

Solution. (final answer only) The projections are $\left(\frac{11}{6}, \frac{1}{3}, \frac{7}{6}\right)^T$ and $\left(\frac{3}{2}, 0, \frac{3}{2}\right)^T$.

Armin Straub straub@southalabama.edu Experimental data: (x_i, y_i)

Wanted: parameters a, b such that $y_i \approx a + bx_i$ for all i

This approximation should be so that $SS_{res} = \sum_{i} [y_i - (a + bx_i)]^2$ is as small as possible.

Example 43. Determine the line that best fits the data points (2, 1), (5, 2), (7, 3), (8, 3). Solution. We need to determine the values a, b for the best-fitting line y = a + bx. If there was a line that fit the data perfectly, then:

$$\begin{aligned} a + 2b = 1 \qquad (2, 1) \\ a + 5b = 2 \qquad (5, 2) \\ a + 7b = 3 \qquad (7, 3) \\ a + 8b = 3 \qquad (8, 3) \end{aligned}$$

In matrix form, this is:
$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \qquad (\text{writing the points as } (x_i, y_i))$$

Using our points, these equations become
$$\begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}. \text{ [This system is inconsistent (as expected).]}$$

We compute a least squares solution.
$$X^T X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}, \qquad X^T y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 5 & 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 \\ 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}.$$
Solving the normal equations
$$\begin{bmatrix} 4 & 22 \\ 22 & 142 \\ 1 & 6 \end{bmatrix} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}, \text{ we find } \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}.$$
Hence, the least squares line is $y = \frac{2}{7} + \frac{5}{14}x.$ The plot above shows our points together with this line. It does look like a very good fit!