Example 39. Find the least squares solution to $A \boldsymbol{x}=\boldsymbol{b}$, where

$$
A=\left[\begin{array}{ll}
4 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{c}
2 \\
0 \\
11
\end{array}\right] .
$$

Solution. First, $A^{T} A=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]=\left[\begin{array}{cc}17 & 1 \\ 1 & 5\end{array}\right]$ and $A^{T} \boldsymbol{b}=\left[\begin{array}{lll}4 & 0 & 1 \\ 0 & 2 & 1\end{array}\right]\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]=\left[\begin{array}{l}19 \\ 11\end{array}\right]$.
Hence, the normal equations $A^{T} A \hat{x}=A^{T} \boldsymbol{b}$ take the form $\left[\begin{array}{cc}17 & 1 \\ 1 & 5\end{array}\right] \hat{\boldsymbol{x}}=\left[\begin{array}{c}19 \\ 11\end{array}\right]$.
Solving, we immediately find $\hat{x}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
Check. The error $\boldsymbol{A} \hat{\boldsymbol{x}}-\boldsymbol{b}=\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right]$ is indeed orthogonal to $\operatorname{col}(A)$. Because $\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right] \cdot\left[\begin{array}{c}4 \\ 1 \\ 1\end{array}\right]=0$ and $\left[\begin{array}{c}2 \\ 4 \\ -8\end{array}\right] \cdot\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]=0$.

Definition 40. The (orthogonal) projection \hat{b} of a vector b onto a subspace Y is the vector in Y closest to b.

The (orthogonal) projection \hat{b} of b onto $\operatorname{col}(A)$ is $\hat{b}=A \hat{\boldsymbol{x}}$.
Here, $\hat{\boldsymbol{x}}$ is a least squares solution to $A \boldsymbol{x}=\boldsymbol{b}$ (i.e. $\hat{\boldsymbol{x}}$ solves $A^{T} A \hat{\boldsymbol{x}}=A^{T} \boldsymbol{b}$).
Why? Why is $A \hat{x}$ the projection of b onto $\operatorname{col}(A)$?
Because, for a least squares solution $\hat{x}, A \hat{x}-b$ is as small as possible (and any element in $\operatorname{col}(A)$ is of the form $A x$ for some x).

Note. This is a recipe for computing any orthogonal projection! That's because every subspace Y can be written as $\operatorname{col}(A)$ for some choice of the matrix A (take, for instance, A so that its columns are a basis for Y).

Example 41. What is the orthogonal projection of $\left[\begin{array}{c}2 \\ 0 \\ 11\end{array}\right]$ onto $\operatorname{span}\left\{\left[\begin{array}{l}4 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$?
Solution. This is the same question as: what is the projection of b onto $\operatorname{col}(A)$, with A and b as in the previous example.
The projection of \boldsymbol{b} onto $\operatorname{Col}(A)$ is $A \hat{\boldsymbol{x}}=\left[\begin{array}{ll}4 & 0 \\ 0 & 2 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}4 \\ 4 \\ 3\end{array}\right]$.

Example 42. (extra homework)

(a) What is the orthogonal projection of $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ onto $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\}$?
(b) What is the orthogonal projection of $\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$ onto span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$?

Solution. (final answer only) The projections are $\left(\frac{11}{6}, \frac{1}{3}, \frac{7}{6}\right)^{T}$ and $\left(\frac{3}{2}, 0, \frac{3}{2}\right)^{T}$.

Application: least squares lines

Experimental data: $\left(x_{i}, y_{i}\right)$

Wanted: parameters a, b such that $y_{i} \approx a+b x_{i}$ for all i

This approximation should be so that $\mathrm{SS}_{\mathrm{res}}=\underbrace{\sum_{i}\left[y_{i}-\left(a+b x_{i}\right)\right]^{2}}$ is as small as possible. residual sum of squares

Example 43. Determine the line that best fits the data points $(2,1),(5,2),(7,3),(8,3)$.
Solution. We need to determine the values a, b for the best-fitting line $y=a+b x$.
If there was a line that fit the data perfectly, then:

$$
\begin{align*}
& a+2 b=1 \tag{2,1}\\
& a+5 b=2 \tag{5,2}\\
& a+7 b=3 \tag{7,3}\\
& a+8 b=3 \tag{8,3}
\end{align*}
$$

In matrix form, this is: $\underbrace{\left[\begin{array}{ll}1 & x_{1} \\ 1 & x_{2} \\ 1 & x_{3} \\ 1 & x_{4}\end{array}\right]}_{\text {design matrix }} \quad\left[\begin{array}{l}a \\ b\end{array}\right]=\underbrace{\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right]}_{\begin{array}{c}\text { observation } \\ \text { vector } y\end{array}}$ (writing the points as $\left(x_{i}, y_{i}\right)$)
Using our points, these equations become

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]
$$

[This system is inconsistent (as expected).]
We compute a least squares solution.

$$
X^{T} X=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 5 \\
1 & 7 \\
1 & 8
\end{array}\right]=\left[\begin{array}{cc}
4 & 22 \\
22 & 142
\end{array}\right], \quad X^{T} \boldsymbol{y}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 5 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{c}
9 \\
57
\end{array}\right]
$$

Solving the normal equations $\left[\begin{array}{cc}4 & 22 \\ 22 & 142\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}9 \\ 57\end{array}\right]$, we find $\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}2 / 7 \\ 5 / 14\end{array}\right]$.
Hence, the least squares line is $y=\frac{2}{7}+\frac{5}{14} x$.
The plot above shows our points together with this line. It does look like a very good fit!

