Example 31. (warmup)
$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 1 \\ 5 \end{bmatrix}$$

Note that this means that the $\begin{array}{c} x_1 + 2x_2 = 1 \\ 3x_1 + x_2 = 1 \\ 5x_2 = 1 \end{array}$ can also be written as $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

[This was the motivation for introducing matrix-vector multiplication.]

In the same way, any system can be written as Ax = b, where A is a matrix and b a vector. In particular, this makes it obvious that:

 $A\mathbf{x} = \mathbf{b}$ is consistent $\iff \mathbf{b}$ is in col(A)

Recall that, by the FTLA, col(A) and $null(A^T)$ are orthogonal complements.

Theorem 32. Ax = b is consistent $\iff b$ is orthogonal to $\operatorname{null}(A^T)$

Proof. $A \boldsymbol{x} = \boldsymbol{b}$ is consistent $\iff \boldsymbol{b}$ is in $col(A) \stackrel{\text{FTLA}}{\iff} \boldsymbol{b}$ is orthogonal to $null(A^T)$ Note. \boldsymbol{b} is orthogonal to $null(A^T)$ means that $\boldsymbol{y}^T \boldsymbol{b} = 0$ whenever $\boldsymbol{y}^T A = \boldsymbol{0}$. Why?!

Example 33. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}$. For which **b** does Ax = b have a solution?

Solution. (old)

$$\begin{bmatrix} 1 & 2 & b_1 \\ 3 & 1 & b_2 \\ 0 & 5 & b_3 \end{bmatrix} \xrightarrow{R_2 - 3R_1 \Rightarrow R_2} \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 5 & b_3 \end{bmatrix} \xrightarrow{R_3 + R_2 \Rightarrow R_3} \begin{bmatrix} 1 & 2 & b_1 \\ 0 & -5 & -3b_1 + b_2 \\ 0 & 0 & -3b_1 + b_2 + b_3 \end{bmatrix}$$

So, $A\boldsymbol{x} = \boldsymbol{b}$ is consistent if and only if $-3b_1 + b_2 + b_3 = 0$.

Solution. (new) We determine a basis for $\operatorname{null}(A^T)$:

$$\begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 5 \end{bmatrix} \xrightarrow{R_2 - 2R_1 \Rightarrow R_2} \begin{bmatrix} 1 & 3 & 0 \\ 0 & -5 & 5 \end{bmatrix} \xrightarrow{-\frac{1}{5}R_2 \Rightarrow R_2} \begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_1 - 3R_2 \Rightarrow R_1} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \end{bmatrix}$$

We read off from the RREF that $\operatorname{null}(A^T)$ has basis $\begin{bmatrix} -3\\1\\1 \end{bmatrix}$. **b** has to be orthogonal to $\operatorname{null}(A^T)$. That means $\mathbf{b} \cdot \begin{bmatrix} -3\\1\\1 \end{bmatrix} = 0$. As above!

Least squares

Example 34. Not all linear systems have solutions.

In fact, for many applications, data needs to be fitted and there is no hope for a perfect match.

For instance, $A\mathbf{x} = \mathbf{b}$ with

$$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

has no solution:

- $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ is not in $\operatorname{col}(A)$ since $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \cdot \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix} \neq 0$ (see previous example).
- Instead of giving up, we want the x which makes Ax and b as close as possible.
- Such *x* is characterized by the error *Ax b* being orthogonal to col(*A*) (i.e. all possible *Ax*).

Definition 35. \hat{x} is a **least squares solution** of the system Ax = b if \hat{x} is such that $A\hat{x} - b$ is as small as possible (i.e. minimal norm).

- If Ax = b is consistent, then \hat{x} is just an ordinary solution. (in that case, $A\hat{x} b = 0$)
- Interesting case: Ax = b is inconsistent. (in particular, if the system is overdetermined)

The normal equations

The following result provides a straightforward recipe (thanks to the FTLA) to find least squares solutions for any system Ax = b.

Theorem 36. \hat{x} is a least squares solution of Ax = b $\iff A^T A \hat{x} = A^T b$ (the normal equations)

Proof.

 \hat{x} is a least squares solution of Ax = b $\iff A\hat{x} - b$ is as small as possible $\iff A\hat{x} - b$ is orthogonal to col(A) $\stackrel{\text{FTLA}}{\iff} A\hat{x} - b$ is in $null(A^T)$ $\iff A^T(A\hat{x} - b) = 0$ $\iff A^TA\hat{x} = A^Tb$

 $A \boldsymbol{x}$

b

Example 37. Find the least squares solution to Ax = b, where

	1	1			2	
A =	-1	1	,	b =	1	
	0	0			1	
	-	_	-			-

Solution. First, $A^T A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ and $A^T b = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Hence, the normal equations $A^T A \hat{x} = A^T b$ take the form $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \hat{x} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Solving, we immediately find $\hat{x} = \begin{bmatrix} 1/2 \\ 3/2 \end{bmatrix}$.

Check. Since $A\hat{x} = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$, the error is $A\hat{x} - b = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}$. Recall that the error must be orthogonal to col(A)!

This error is indeed orthogonal to $\operatorname{col}(A)$ because $\begin{bmatrix} 0\\0\\-1 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\0 \end{bmatrix} = 0$ and $\begin{bmatrix} 0\\0\\-1 \end{bmatrix} \cdot \begin{bmatrix} 1\\1\\0 \end{bmatrix} = 0$.

Comment. Why are the normal equations so particularly simple (compare with example below for the typical case) here? Note how each entry of the product $A^T A$ is computed as the dot product of two columns of A (matrix products of a row of A^T times a column of A). That $A^T A$ is a diagonal matrix reflects the fact that the two columns of A are orthogonal to each other.

Example 38. (extra) Find the least squares solution to Ax = b, where

1	2			1	
3	1	,	b =	1	
0	5			1	
	$\begin{array}{c}1\\3\\0\end{array}$	$\begin{array}{ccc}1&2\\&3&1\\&0&5\end{array}$	$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix},$	$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}, \boldsymbol{b} =$	$\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Solution. First, $A^T A = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 10 & 5 \\ 5 & 30 \end{bmatrix}$ and $A^T b = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$.

Hence, the normal equations $A^T A \hat{x} = A^T b$ take the form $\begin{bmatrix} 10 & 5 \\ 5 & 30 \end{bmatrix} \hat{x} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$.

Since $\begin{bmatrix} 10 & 5 \\ 5 & 30 \end{bmatrix}^{-1} = \frac{1}{275} \begin{bmatrix} 30 & -5 \\ -5 & 10 \end{bmatrix} = \frac{1}{55} \begin{bmatrix} 6 & -1 \\ -1 & 2 \end{bmatrix}$, we find $\hat{\boldsymbol{x}} = \frac{1}{55} \begin{bmatrix} 6 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \end{bmatrix} = \frac{1}{55} \begin{bmatrix} 16 \\ 12 \end{bmatrix}$.

Check. Since $A\hat{x} = \frac{1}{55} \begin{bmatrix} 40\\60\\60 \end{bmatrix}$, the error $A\hat{x} - b = \frac{1}{55} \begin{bmatrix} -15\\5\\5 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -3\\1\\1 \end{bmatrix}$ must be orthogonal to col(A). The error is indeed orthogonal to col(A) because $\begin{bmatrix} 1\\3\\0 \end{bmatrix} \cdot \frac{1}{11} \begin{bmatrix} -3\\1\\1 \end{bmatrix} = 0$ and $\begin{bmatrix} 2\\1\\5 \end{bmatrix} \cdot \frac{1}{11} \begin{bmatrix} -3\\1\\1 \end{bmatrix} = 0$.