
Sketch of Lecture 5 Wed, 1/16/2019

The fundamental theorem

Example 22. The four fundamental subspaces associated with a matrix A are

col(A); row(A); null(A); null(AT):

Note that row(A) = col(AT). (In particular, we usually write vectors in row(A) as column vectors.)

De�nition 23. null(AT) is the left null space of A.

Why that name? Recall that, by de�nition x is in null(A) () Ax= 0.
Likewise, x is in null(AT ) () ATx=0 () xTA=0.

[Recall that (AB)T =BTAT . In particular, (ATx)T =xTA, which is what we used in the last equivalence.]

Theorem 24. (Fundamental Theorem of Linear Algebra, Part I)

Let A be an m�n matrix of rank r.

� dim col(A)= r (subspace of Rm)

� dim row(A)= r (subspace of Rn) row(A)= col(AT )

� dimnull(A)=n¡ r (subspace of Rn)

� dimnull(AT)=m¡ r (subspace of Rm)

Example 25. Let A=

24 1 2
2 4
3 6

35. Determine bases for all four fundamental subspaces.

Solution. Make sure that, for such a simple matrix, you can see all of these that at a glance!

col(A)= span

(24 1
2
3

35
)
, row(A)= span

n�
1
2

�o
, null(A) = span

n�
¡2
1

�o
, null(AT)= span

(24 ¡21
0

35;
24 ¡30

1

35
)

Example 26. (important observation) For A as in the previous example, what do you notice
about the basis vectors for row(A) and null(A)? What about col(A) and null(AT)?
Solution. The basis vectors for row(A) and null(A) are orthogonal!

�
¡2
1

�
�
�
1
2

�
=0

The same is true for the basis vectors for col(A) and null(AT):
24 1
2
3

35�
24 ¡21

0

35=0 and
24 1
2
3

35�
24 ¡30

1

35=0

Vectors in null(A) are orthogonal to vectors in row(A).
In short, null(A) is orthogonal to row(A).
Why? Suppose that x is in null(A). That is, Ax= 0.
But think about what Ax= 0 means (row-product rule).
It means that the inner product of every row with x is zero.
But that implies that x is orthogonal to the row space.

De�nition 27. As done in the observation above, we say that two subspaces V and W of Rn

are orthogonal if and only if every vector in V is orthogonal to every vector in W .
The orthogonal complement of W is the space W? of all vectors that are orthogonal to W .
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Exercise. Show that the orthogonal complement is indeed a vector space.

Theorem 28. (Fundamental Theorem of Linear Algebra, Part II)

� null(A) is orthogonal to row(A). (both subspaces of Rn)

Note that dimnull(A)+dimrow(A) =n.
Hence, the two spaces are orthogonal complements.

� null(AT) is orthogonal to col(A).
Again, the two spaces are orthogonal complements.

Note. The second part is just the �rst part with A replaced by AT .

Example 29. Let A=
24 1 2 1
2 4 0
3 6 0

35. Check that null(A) and row(A) are orthogonal complements.

Solution.

24 1 2 1
2 4 0
3 6 0

35  
R2¡2R1)R2

R3¡3R1)R3

24 1 2 1
0 0 ¡2
0 0 ¡3

35  
R3¡ 3

2
R2)R3

24 1 2 1
0 0 ¡2
0 0 0

35  RREF

24 1 2 0
0 0 1
0 0 0

35
Hence, null(A)= span

(24 ¡21
0

35
)
, row(A)= span

(24 1
2
0

35;
24 0
0
1

35
)
.

The basis vectors are orthogonal because24 ¡21
0

35�
24 1
2
0

35=0;

24 ¡21
0

35�
24 0
0
1

35=0:

Note. Because
24 ¡21

0

35 is orthogonal to both basis vectors, it is orthogonal to every vector in the row space.

Vectors in row(A) are of the form v= a

24 1
2
0

35+ b

24 0
0
1

35. Then,
24 ¡21

0

35�v=a

24 ¡21
0

35�
24 1
2
0

35+ b

24 ¡21
0

35�
24 0
0
1

35=0.

Conclusion. Hence, null(A) and row(A) are indeed orthogonal spaces.
In fact, null(A) and row(A) are orthogonal complements.

That is because
24 ¡21

0

35;
24 1
2
3

35;
24 1
0
0

35 are orthogonal, hence independent, and thus a basis of all of R3.

Example 30. (extra) Determine bases for all four fundamental subspaces of

A=

24 1 2 1 3
2 4 0 1
3 6 0 1

35:
Verify all parts of the Fundamental Theorem, especially that null(A) and row(A) (as well as
null(AT) and col(A)) are orthogonal complements.

Partial solution. One can almost see that rank(A)=3. Hence, the dimensions of the fundamental subspaces
are :::
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Any serious linear algebra problems are done by a machine. Let us see how to use the open-
source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use
it in the cloud at cocalc.com from any browser. For short computations, like the one below, you can also
just use the input �eld on our course website.
Sage is built as a Python library, so any Python code is valid. Here, we will just use it as a fancy calculator.

Let's revisit Example 29 and let Sage do the work for us:

Sage] A = matrix([[1,2,1],[2,4,0],[3,6,0]])

Sage] A.rref()24 1 2 0
0 0 1
0 0 0

35
Similarly, if we wanted to compute a basis for null(AT), we can simply do:

Sage] A.transpose().rref()2664
1 0 0

0 1
3
2

0 0 0

3775
Here's some other standard things we might be interested in (compare with Example 13):

Sage] A = matrix([[4,0,2],[2,2,2],[1,0,3]])

Sage] A.eigenvalues()

[5; 2; 2]

Sage] A.eigenvectors_right()��
5;

��
1; 1;

1
2

��
; 1

�
; (2; [(1; 0; ¡ 1); (0; 1; 0)]; 2)

�
Sage] A.eigenmatrix_right()0BB@

24 5 0 0
0 2 0
0 0 2

35;
2664

1 1 0
1 0 1
1

2
¡1 0

3775
1CCA

Sage] A.rank()

3

Sage] A.determinant()

20

Sage] A.inverse()2666664
3
10

0 ¡1
5

¡1
5

1
2
¡1
5

¡ 1
10

0
2
5

3777775
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