Orthogonality

The inner product and distances

Definition 14. The inner product (or dot product) of v, w in \mathbb{R}^n :

 $\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{v}^T \boldsymbol{w} = v_1 w_1 + \ldots + v_n w_n.$

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity and distributivity.

In addition: $\boldsymbol{v} \cdot \boldsymbol{w} = \boldsymbol{w} \cdot \boldsymbol{v}$.

Example 15.
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} = 2 - 2 + 12 = 12$$

Definition 16.

• The **norm** (or **length**) of a vector v in \mathbb{R}^n is

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v}\cdot\boldsymbol{v}} = \sqrt{v_1^2 + \ldots + v_n^2}$$

• The **distance** between points \boldsymbol{v} and \boldsymbol{w} in \mathbb{R}^n is

$$\operatorname{dist}(\boldsymbol{v},\boldsymbol{w}) = \|\boldsymbol{v}-\boldsymbol{w}\|.$$

Example 17. For instance, in \mathbb{R}^2 , dist $\left(\begin{bmatrix} x_1\\y_1\end{bmatrix}, \begin{bmatrix} x_2\\y_2\end{bmatrix}\right) = \left\|\begin{bmatrix} x_1-x_2\\y_1-y_2\end{bmatrix}\right\| = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$.

Example 18. Write $||v - w||^2$ as a dot product, and multiply it out. Solution. $||v - w||^2 = (v - w) \cdot (v - w) = v \cdot v - v \cdot w - w \cdot v + w \cdot w = ||v||^2 - 2v \cdot w + ||w||^2$

Comment. This is a vector version of $(x - y)^2 = x^2 - 2xy + y^2$.

The reason we were careful and first wrote $-\mathbf{v} \cdot \mathbf{w} - \mathbf{w} \cdot \mathbf{v}$ before simplifying it to $-2\mathbf{v} \cdot \mathbf{w}$ is that we should not take rules such as $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$ for granted. For instance, for the cross product $\mathbf{v} \times \mathbf{w}$, that you may have seen in Calculus, we have $\mathbf{v} \times \mathbf{w} \neq \mathbf{w} \times \mathbf{v}$ (instead, $\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v}$).

Orthogonal vectors

Definition 19. v and w in \mathbb{R}^n are orthogonal if

 $\boldsymbol{v} \cdot \boldsymbol{w} = 0.$

Why? How is this related to our understanding of right angles?

Pythagoras!

v and w are orthogonal $\iff \|v\|^2 + \|w\|^2 = \underbrace{\|v - w\|^2}_{(by \text{ previous example})} \overset{\|v - w\|^2}{(by \text{ previous example})}$ $\iff -2v \cdot w = 0$ v - w v w

What are we looking for? The orthogonal complement of v consists of all vectors that are orthogonal to v. More generally, the orthogonal complement of a space V consists of all vectors that are orthogonal to every vector in V.

Solution. (staring/intution) We are working in 3-dimensional space and already have 1 vector. The vectors orthogonal to it lie in a 3 - 1 = 2-dimensional space (a plane).

Two of the vectors orthogonal to $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ are $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$. Knowing that the orthogonal complement has dimension 2, we conclude that $\begin{bmatrix} 1\\-1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ is a basis.

In other words, the orthogonal complement of span $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$ is span $\left\{ \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$. [Note how the dimensions add up to the dimension of the entire space: 1 + 2 = 3.]

Solution. (professional) $\begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \cdot \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = 0$ (dot product!) is the same as $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = 0$ (matrix product!). Hence, the orthogonal complement of span $\left\{ \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix} \right\}$ is the same as null($\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$). Computing a basis for null($\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$) is easy since $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ is already in RREF. Note that the general solution to $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \mathbf{x} = 0$ is $\begin{bmatrix} -2s - t\\ s\\ t \end{bmatrix} = s \begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix} + t \begin{bmatrix} -1\\ 0\\ 1 \end{bmatrix}$. A basis for null($\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$) therefore is $\begin{bmatrix} -2\\ 1\\ 0\\ 1 \end{bmatrix}$, $\begin{bmatrix} -1\\ 0\\ 1\\ 0 \end{bmatrix}$. (Check that these are indeed orthogonal to $\begin{bmatrix} 1\\ 2\\ 1\\ 2\\ 1 \end{bmatrix}$!)

Example 21. Determine a basis for the orthogonal complement of span $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}$.

Solution. We are looking for vectors \boldsymbol{x} such that $\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \boldsymbol{0}$ and $\begin{bmatrix} 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \boldsymbol{0}$. The two equations can be combined into a single one: $\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \boldsymbol{0}$.

In other words, the orthogonal complement of span $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}$ is the same as $\operatorname{null}\left(\begin{bmatrix} 1 & 2 & 1\\ 3 & 1 & 2 \end{bmatrix} \right)$. It remains to compute a basis for that null space:

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \end{bmatrix} \overset{R_2 - 3R_1 \Rightarrow R_2}{\underset{\longrightarrow}{\longrightarrow}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -5 & -1 \end{bmatrix} \xrightarrow{\text{back-substitution}} \overset{-3/5s}{\underset{\longrightarrow}{\longrightarrow}}$$

Hence, a basis for the orthogonal complement of span $\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}$ is $\begin{bmatrix} -3/5\\-1/5\\1 \end{bmatrix}$. Check. $\begin{bmatrix} -3/5\\-1/5\\1 \end{bmatrix}$ is indeed orthogonal to both $\begin{bmatrix} 1\\2\\1 \end{bmatrix}$ and $\begin{bmatrix} 3\\1\\2 \end{bmatrix}$.

Just to make sure. Why was it clear that the orthogonal complement is 1-dimensional?