Orthogonality

The inner product and distances

Definition 14. The inner product (or dot product) of $\boldsymbol{v}, \boldsymbol{w}$ in \mathbb{R}^{n} :

$$
\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{v}^{T} \boldsymbol{w}=v_{1} w_{1}+\ldots+v_{n} w_{n} .
$$

Because we can think of this as a special case of the matrix product, it satisfies the basic rules like associativity and distributivity.
In addition: $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}$.
Example 15. $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right] \cdot\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]=2-2+12=12$

Definition 16.

- The norm (or length) of a vector \boldsymbol{v} in \mathbb{R}^{n} is

$$
\|\boldsymbol{v}\|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}=\sqrt{v_{1}^{2}+\ldots+v_{n}^{2}} .
$$

- The distance between points v and \boldsymbol{w} in \mathbb{R}^{n} is

$$
\operatorname{dist}(\boldsymbol{v}, \boldsymbol{w})=\|\boldsymbol{v}-\boldsymbol{w}\| .
$$

Example 17. For instance, in \mathbb{R}^{2}, $\operatorname{dist}\left(\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right],\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]\right)=\left\|\left[\begin{array}{l}x_{1}-x_{2} \\ y_{1}-y_{2}\end{array}\right]\right\|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$.
Example 18. Write $\|\boldsymbol{v}-\boldsymbol{w}\|^{2}$ as a dot product, and multiply it out.
Solution. $\|\boldsymbol{v}-\boldsymbol{w}\|^{2}=(\boldsymbol{v}-\boldsymbol{w}) \cdot(\boldsymbol{v}-\boldsymbol{w})=\boldsymbol{v} \cdot \boldsymbol{v}-\boldsymbol{v} \cdot \boldsymbol{w}-\boldsymbol{w} \cdot \boldsymbol{v}+\boldsymbol{w} \cdot \boldsymbol{w}=\|\boldsymbol{v}\|^{2}-2 \boldsymbol{v} \cdot \boldsymbol{w}+\|\boldsymbol{w}\|^{2}$
Comment. This is a vector version of $(x-y)^{2}=x^{2}-2 x y+y^{2}$.
The reason we were careful and first wrote $-\boldsymbol{v} \cdot \boldsymbol{w}-\boldsymbol{w} \cdot \boldsymbol{v}$ before simplifying it to $-2 \boldsymbol{v} \cdot \boldsymbol{w}$ is that we should not take rules such as $\boldsymbol{v} \cdot \boldsymbol{w}=\boldsymbol{w} \cdot \boldsymbol{v}$ for granted. For instance, for the cross product $\boldsymbol{v} \times \boldsymbol{w}$, that you may have seen in Calculus, we have $\boldsymbol{v} \times \boldsymbol{w} \neq \boldsymbol{w} \times \boldsymbol{v}$ (instead, $\boldsymbol{v} \times \boldsymbol{w}=-\boldsymbol{w} \times \boldsymbol{v}$).

Orthogonal vectors

Definition 19. v and w in \mathbb{R}^{n} are orthogonal if

$$
\boldsymbol{v} \cdot \boldsymbol{w}=0
$$

Why? How is this related to our understanding of right angles?
Pythagoras!
\boldsymbol{v} and \boldsymbol{w} are orthogonal

$$
\Longleftrightarrow\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}=\underbrace{\|\boldsymbol{v}-\boldsymbol{w}\|^{2}}_{\substack{=\|\boldsymbol{v}\|^{2}-2 \boldsymbol{v} \cdot \boldsymbol{w}+\|\boldsymbol{w}\|^{2} \\ \text { (by previous example) }}}
$$

$$
\Longleftrightarrow-2 \boldsymbol{v} \cdot \boldsymbol{w}=0
$$

$$
\Longleftrightarrow \boldsymbol{v} \cdot \boldsymbol{w}=0
$$

Example 20. Determine a basis for the orthogonal complement of (the span of) $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
What are we looking for? The orthogonal complement of v consists of all vectors that are orthogonal to v. More generally, the orthogonal complement of a space V consists of all vectors that are orthogonal to every vector in V.

Solution. (staring/intution) We are working in 3-dimensional space and already have 1 vector. The vectors orthogonal to it lie in a $3-1=2$-dimensional space (a plane).
Two of the vectors orthogonal to $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ are $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.
Knowing that the orthogonal complement has dimension 2 , we conclude that $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ is a basis.
In other words, the orthogonal complement of span $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$ is span $\left\{\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$.
[Note how the dimensions add up to the dimension of the entire space: $1+2=3$.]
Solution. (professional) $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\mathbf{0}$ (dot product!) is the same as $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\mathbf{0}$ (matrix product!). Hence, the orthogonal complement of $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]\right\}$ is the same as $\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\right)$.
Computing a basis for $\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\right)$ is easy since $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$ is already in RREF.
Note that the general solution to $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right] \boldsymbol{x}=0$ is $\left[\begin{array}{c}-2 s-t \\ s \\ t\end{array}\right]=s\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
A basis for $\operatorname{null}\left(\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\right)$ therefore is $\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$. (Check that these are indeed orthogonal to $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$!)
Example 21. Determine a basis for the orthogonal complement of $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]\right\}$.
Solution. We are looking for vectors \boldsymbol{x} such that $\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\mathbf{0}$ and $\left[\begin{array}{llll}3 & 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\mathbf{0}$.
The two equations can be combined into a single one: $\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\mathbf{0}$.
In other words, the orthogonal complement of $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]\right\}$ is the same as null $\left(\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2\end{array}\right]\right)$.
It remains to compute a basis for that null space:

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right] \xrightarrow{R_{2}-3 R_{1} \Rightarrow R_{2}}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & -5 & -1
\end{array}\right] \underset{\rightsquigarrow}{\text { back-substitution }}\left[\begin{array}{c}
-3 / 5 s \\
-1 / 5 s \\
s
\end{array}\right]
$$

Hence, a basis for the orthogonal complement of $\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]\right\}$ is $\left[\begin{array}{c}-3 / 5 \\ -1 / 5 \\ 1\end{array}\right]$.
Check. $\left[\begin{array}{c}-3 / 5 \\ -1 / 5 \\ 1\end{array}\right]$ is indeed orthogonal to both $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$.
Just to make sure. Why was it clear that the orthogonal complement is 1 -dimensional?

