Sketch of Lecture 3

Example 10. (review) If $A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$, then its **transpose** is $A^T = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$.

Recall that $(AB)^T = B^T A^T$. This reflects the fact that, in the column-centric versus the row-centric interpretation of matrix multiplication, the order of the matrices is reversed.

Comment. When working with complex numbers, the fundamental role is not played by the transpose but by the conjugate transpose instead (we'll see that in our discussion of orthogonality): $A^* = \overline{A^T}$.

For instance, if $A = \begin{bmatrix} 1 - 3i & 5i \\ 2 + i & 3 \end{bmatrix}$, then $A^* = \begin{bmatrix} 1 + 3i & 2 - i \\ -5i & 3 \end{bmatrix}$.

Example 11. (review) \mathbb{R}^3 is the vector space of all vectors with 3 real entries.

 ${\rm I\!R}$ itself refers to the set of real numbers. We will later also discuss ${\rm C\!}$, the set of complex numbers.

The standard basis of \mathbb{R}^3 is $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

Recall that vectors from a vector space V form a basis of V if and only iff

- the vectors span V, and
- the vectors are (linearly) independent.

Make sure that you can define precisely what it means for vectors $v_1, ..., v_n$ to be independent.

Suppose that A is $n \times n$ and has independent eigenvectors $v_1, ..., v_n$. Then A can be **diagonalized** as $A = PDP^{-1}$, where

- the columns of *P* are the eigenvectors, and
- the diagonal matrix *D* has the eigenvalues on the diagonal

Such a diagonalization is possible if and only if A has enough (independent) eigenvectors.

Comment. If you don't quite recall why these choices result in the diagonalization $A = PDP^{-1}$, note that the diagonalization is equivalent to AP = PD.

• Put the eigenvectors $x_1, ..., x_n$ as columns into a matrix P.

$$A\boldsymbol{x}_{i} = \lambda_{i}\boldsymbol{x}_{i} \implies A\begin{bmatrix} | & | \\ \boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n} \\ | & | \end{bmatrix} = \begin{bmatrix} | & | \\ \lambda_{1}\boldsymbol{x}_{1} & \cdots & \lambda_{n}\boldsymbol{x}_{n} \\ | & | \end{bmatrix}$$
$$= \begin{bmatrix} | & | \\ \boldsymbol{x}_{1} & \cdots & \boldsymbol{x}_{n} \\ | & | \end{bmatrix} \begin{bmatrix} \lambda_{1} & \\ & \ddots & \\ & & \lambda_{n} \end{bmatrix}$$

• In summary: AP = PD

Example 12. (extra practice) Diagonalize, if possible, the matrices

$$A = \begin{bmatrix} 3 & 4 & 1 \\ 0 & 2 & 0 \\ 1 & 4 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Solution. For instance, $A = PDP^{-1}$ with $P = \begin{bmatrix} 1 & -4 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 4 & 2 \\ & 2 \end{bmatrix}$. *B* is not diagonalizable. For instance, $C = PDP^{-1}$ with $P = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ & 0 \end{bmatrix}$.

Armin Straub straub@southalabama.edu **Example 13. (to be finished next time)** Let $A = \begin{bmatrix} 4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3 \end{bmatrix}$.

(a) Find the eigenvalues and bases for the eigenspaces of A.

(b) Diagonalize A. That is, determine matrices P and D such that $A = PDP^{-1}$.

Solution.

(a) By expanding by the second column, we find that the characteristic polynomial $det(A - \lambda I)$ is

$$\begin{vmatrix} 4-\lambda & 0 & 2\\ 2 & 2-\lambda & 2\\ 1 & 0 & 3-\lambda \end{vmatrix} = (2-\lambda) \begin{vmatrix} 4-\lambda & 2\\ 1 & 3-\lambda \end{vmatrix} = (2-\lambda)[(4-\lambda)(3-\lambda)-2] = (2-\lambda)^2(5-\lambda).$$

Hence, the eigenvalues are $\lambda = 2$ (with multiplicity 2) and $\lambda = 5$.

Comment. At this point, we know that we will find one eigenvector for $\lambda = 5$ (more precisely, the 5eigenspace definitely has dimension 1). On the other hand, the 2-eigenspace might have dimension 2 or 1. In order for A to be diagonalizable, the 2-eigenspace must have dimension 2. (Why?!)

• The 5-eigenspace is null
$$\begin{pmatrix} -1 & 0 & 2 \\ 2 & -3 & 2 \\ 1 & 0 & -2 \end{pmatrix}$$
.

Doing one set of row operations, we obtain

$$\operatorname{null}\left(\left[\begin{array}{ccc} -1 & 0 & 2\\ 2 & -3 & 2\\ 1 & 0 & -2 \end{array}\right]\right) \stackrel{R_2+2R_1 \Rightarrow R_2}{=} \operatorname{null}\left(\left[\begin{array}{ccc} -1 & 0 & 2\\ 0 & -3 & 6\\ 0 & 0 & 0 \end{array}\right]\right) = \operatorname{span}\left\{\left[\begin{array}{ccc} 2\\ 2\\ 1\\ 1 \end{array}\right]\right\}$$

In other words, the 5-eigenspace has basis $\begin{bmatrix} 2\\ 2\\ 1 \end{bmatrix}$. **Review.** The row-reduced echelon form (RREF) of $\begin{bmatrix} -1 & 0 & 2\\ 2 & -3 & 2\\ 1 & 0 & -2 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & -2\\ 0 & 1 & -2\\ 0 & 0 & 0 \end{bmatrix}$.

• The 2-eigenspace is null
$$\begin{pmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

$$\operatorname{null}\left(\left[\begin{array}{ccc} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{array}\right]\right) \stackrel{R_2 - R_1 \Rightarrow R_2}{=} \operatorname{null}\left(\left[\begin{array}{ccc} 2 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]\right) = \operatorname{span}\left\{\left[\begin{array}{ccc} 0 \\ 1 \\ 0 \end{array}\right], \left[\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right]\right\}$$

In other words, the 2-eigenspace has basis $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$.

Comment. So, indeed, the 2-eigenspace has dimension 2. In particular, A is diagonalizable. **Review.** By our computation, and scaling the first row, the RREF of $\begin{bmatrix} 2 & 0 & 2 \\ 2 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. (b) A possible choice is $P = \begin{bmatrix} 2 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, $D = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

Comment. However, many other choices are possible and correct. For instance, the order of the eigenvalues in D doesn't matter (as long as the same order is used for P). Also, for P, the columns can be chosen to be any other set of eigenvectors.