
Sketch of Lecture 2 Wed, 1/9/2019

Example 7. Let us do Gaussian elimination on A=
�
2 1
4 ¡6

�
until we have an echelon form:

A=

�
2 1
4 ¡6

�
 R2¡2R1)R2

�
2 1
0 ¡8

�
As last class, the row operation can be encoded by multiplication with an �almost identity matrix� E:�

1 0
¡2 1

�
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=

�
2 1
0 ¡8
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Since
�

1 0
¡2 1

�¡1
=

�
1 0
2 1

�
(no calculation needed!), this means that

A=E¡1U =

�
1 0
2 1

��
2 1
0 ¡8

�
:

We factored A as the product of a lower and an upper triangular matrix!

A=LU is known as the LU decomposition of A.
L is lower triangular, U is upper triangular.

If A is m�n, then L is an invertible lower triangular m�m matrix, and U is a usual echelon form of A.
Every matrix A has a LU decomposition (after possibly swapping some rows of A �rst).

� The matrix U is just the echelon form of A produced during Gaussian elimination.

� The matrix L can be constructed, entry-by-entry, by simply recording the row operations
used during Gaussian elimination. (No extra work needed!)

Recall. The RREF (row-reduced echelon form) of A is obtained from the echelon form by
scaling the pivots to 1, and then eliminating the entries above the pivots. In our example, the
RREF of A is the 2� 2 identity matrix.
[That's not surprising: A square matrix is invertible if and only if its RREF is the identity matrix. If that
isn't obvious to you, think about how you invert a matrix using Gaussian elimination (after augmenting with
identity:::).]

Example 8. (extra) Determine the LU decomposition of A=
�
1 2
3 4

�
.

Solution. A=
�
1 2
3 4

�
 R2¡3R1)R2

�
1 2
0 ¡2

�
translates into

�
1 0
¡3 1

��
1 2
3 4

�
=

�
1 2
0 ¡2

�
.

Since
�

1 0
¡3 1

�¡1
=

�
1 0
3 1

�
(no calculation needed!), we therefore have A=

�
1 0
3 1

��
1 2
0 ¡2

�
.

Review. Recall the Gauss�Jordan method of computing A¡1. Starting with the augmented
matrix [A j I], we do Gaussian elimination until we obtain the RREF, which will be of the form
[I j A¡1] so that we can read o� A¡1.
Why does that work? By our discussion, the steps of Gaussian elimination can be expressed by multiplication
(on the left) with a matrix B. Only looking at the �rst part of the augmented matrix, and since the RREF
of an invertible matrix is I, we have BA= I, which means that we must have B =A¡1. The other part of
the augmented matrix (which is I initially) gets multiplied with B =A¡1 as well, so that, in the end, it is
BI =A¡1. That's why we can read o� A¡1!
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Review: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To �nd eigenvectors and eigenvalues of A:

(a) First, �nd the eigenvalues � by solving det(A¡�I)= 0.

det(A¡ �I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, �nd corresponding eigenvectors by solving (A¡�I)x=0.
More precisely, we �nd a basis of eigenvectors for the �-eigenspace null(A¡�I).

Example 9. A=

24 4 0 2
2 2 2
1 0 3

35 has one eigenvector that is �easy� to see. Do you see it?

Solution. Note that A
24 0
1
0

35=
24 0
2
0

35=2

24 0
1
0

35. Hence,
24 0
1
0

35 is a 2-eigenvector.

Just for contrast. Note that A
24 0
0
1

35=
24 2
2
3

35=/ �
24 0
0
1

35. Hence,
24 0
0
1

35 is not an eigenvector.

Armin Straub
straub@southalabama.edu

4


