Example 7. Let us do Gaussian elimination on $A=\left[\begin{array}{cc}2 & 1 \\ 4 & -6\end{array}\right]$ until we have an echelon form:

$$
A=\left[\begin{array}{cc}
2 & 1 \\
4 & -6
\end{array}\right] \xrightarrow{R_{2}-2 R_{1} \Rightarrow R_{2}}\left[\begin{array}{cc}
2 & 1 \\
0 & -8
\end{array}\right]
$$

As last class, the row operation can be encoded by multiplication with an "almost identity matrix" E :

$$
\underbrace{\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]}_{E} \underbrace{\left[\begin{array}{cc}
2 & 1 \\
4 & -6
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
2 & 1 \\
0 & -8
\end{array}\right]}_{U}
$$

Since $\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]^{-1}=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$ (no calculation needed!), this means that

$$
A=E^{-1} U=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
0 & -8
\end{array}\right] .
$$

We factored A as the product of a lower and an upper triangular matrix!

```
A=LU is known as the LU decomposition of A.
    L is lower triangular, U is upper triangular.
```

If A is $m \times n$, then L is an invertible lower triangular $m \times m$ matrix, and U is a usual echelon form of A. Every matrix A has a LU decomposition (after possibly swapping some rows of A first).

- The matrix U is just the echelon form of A produced during Gaussian elimination.
- The matrix L can be constructed, entry-by-entry, by simply recording the row operations used during Gaussian elimination. (No extra work needed!)

Recall. The RREF (row-reduced echelon form) of A is obtained from the echelon form by scaling the pivots to 1 , and then eliminating the entries above the pivots. In our example, the RREF of A is the 2×2 identity matrix.
[That's not surprising: A square matrix is invertible if and only if its RREF is the identity matrix. If that isn't obvious to you, think about how you invert a matrix using Gaussian elimination (after augmenting with identity...).]

Example 8. (extra) Determine the LU decomposition of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
Solution. $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{R_{2}-3 R_{1} \Rightarrow R_{2}}\left[\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right]$ translates into $\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right]$.
Since $\left[\begin{array}{cc}1 & 0 \\ -3 & 1\end{array}\right]^{-1}=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$ (no calculation needed!), we therefore have $A=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right]$.
Review. Recall the Gauss-Jordan method of computing A^{-1}. Starting with the augmented matrix $[A \mid I]$, we do Gaussian elimination until we obtain the RREF, which will be of the form $\left[I \mid A^{-1}\right]$ so that we can read off A^{-1}.
Why does that work? By our discussion, the steps of Gaussian elimination can be expressed by multiplication (on the left) with a matrix B. Only looking at the first part of the augmented matrix, and since the RREF of an invertible matrix is I, we have $B A=I$, which means that we must have $B=A^{-1}$. The other part of the augmented matrix (which is I initially) gets multiplied with $B=A^{-1}$ as well, so that, in the end, it is $B I=A^{-1}$. That's why we can read off A^{-1} !

Review: Eigenvalues and eigenvectors

If $A \boldsymbol{x}=\lambda \boldsymbol{x}$ (and $\boldsymbol{x} \neq \mathbf{0}$), then \boldsymbol{x} is an eigenvector of A with eigenvalue λ (just a number).
Note that for the equation $A \boldsymbol{x}=\lambda \boldsymbol{x}$ to make sense, A needs to be a square matrix (i.e. $n \times n$).
Key observation:

$$
\begin{aligned}
& A \boldsymbol{x}=\lambda \boldsymbol{x} \\
\Longleftrightarrow & A \boldsymbol{x}-\lambda \boldsymbol{x}=\mathbf{0} \\
\Longleftrightarrow & (A-\lambda I) \boldsymbol{x}=\mathbf{0}
\end{aligned}
$$

This homogeneous system has a nontrivial solution \boldsymbol{x} if and only if $\operatorname{det}(A-\lambda I)=0$.
To find eigenvectors and eigenvalues of A :
(a) First, find the eigenvalues λ by solving $\operatorname{det}(A-\lambda I)=0$.
$\operatorname{det}(A-\lambda I)$ is a polynomial in λ, called the characteristic polynomial of A.
(b) Then, for each eigenvalue λ, find corresponding eigenvectors by solving $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$.

More precisely, we find a basis of eigenvectors for the λ-eigenspace $\operatorname{null}(A-\lambda I)$.

Example 9. $A=\left[\begin{array}{lll}4 & 0 & 2 \\ 2 & 2 & 2 \\ 1 & 0 & 3\end{array}\right]$ has one eigenvector that is "easy" to see. Do you see it?
Solution. Note that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]=2\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Hence, $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is a 2-eigenvector.
Just for contrast. Note that $A\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right] \neq \lambda\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Hence, $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is not an eigenvector.

