Review: Matrix calculus

Example 1. Matrix multiplication is not commutative!

• $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 3 & 10 \end{bmatrix}$

Multiplication (on the right) with that "almost identity matrix" is performing the column operation $C_2 + 2C_1 \Rightarrow C_2$ (i.e. 2 times the first column is added to the second column).

• $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 3 & 4 \end{bmatrix}$

Multiplication (on the left) with the same matrix is performing the row operation $R_1 + 2R_2 \Rightarrow R_1$. **First comment.** This indicates a second interpretation of matrix multiplication: instead of taking linear combinations of columns of the first matrix, we can also take linear combinations of rows of the second matrix.

Second comment. The row operations we are doing during Gaussian elimination can be realized by multiplying (on the left) with "almost identity matrices".

Example 2. $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 14 \end{bmatrix}$ whereas $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$.

If you know about the dot product, do you see a connection with the first case?

Example 3. Suppose A is $m \times n$ and B is $p \times q$. When does AB make sense? In that case, what are the dimensions of AB?

AB makes sense if n = p. In that case, AB is a $m \times q$ matrix.

Example 4. $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

On the RHS we have the **identity matrix**, usually denoted I or I_2 (since it's the 2×2 identity matrix here). Hence, the two matrices on the left are inverses of each other: $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$.

Example 5. The following formula immediately gives us the inverse of a 2×2 matrix (if it exists). It is worth remembering!

$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} $ provided that $ad - bc \neq 0$				
Let's check that! $\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} ad-bc & 0 \\ 0 & -cb+ad \end{bmatrix} = I_2$				
In particular, a 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible $\iff ad - bc \neq 0$.				
Recall that this is the determinant : $det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$.				
$\det(A) = 0 \iff A \text{ is not invertible}$				

Example 6.

 $\left[\begin{array}{rrrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right] \left[\begin{array}{rrrrr} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] = \left[\begin{array}{rrrr} -7 & 2 & 3 \\ -16 & 5 & 6 \\ -25 & 8 & 9 \end{array}\right]$

Multiplication (on the right) with that "almost identity matrix" is performing the column operation $C_1 - 4C_2 \Rightarrow C_1$ (i.e. -4 times the second column is added to the first column).

Γ	1	0	0	7	1	2	3		1	2	3
-	-4	1	0		4	5	6	=	0	-3	-6
L	0	0	1		7	8	9		7	8	9

Multiplication (on the left) with the same matrix is performing the row operation $R_2 - 4R_1 \Rightarrow R_2$.

Comment (again). The row operations we are doing during Gaussian elimination can all be realized by multiplying (on the left) with "almost identity matrices".

These matrices are called **elementary matrices** (they are obtained by performing a single elementary row operation on an identity matrix).

Elementary matrices are invertible because elementary row operations are reversible:

$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} \end{array}$	1 0 0]	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
$2 \ 1 \ 0 =$	$-2 \ 1 \ 0$,	$\begin{vmatrix} 0 & 2 & 0 \end{vmatrix} = \begin{vmatrix} \frac{1}{2} \end{vmatrix}$, 1 0 0 = 1 0 0
	0 0 1		$1 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$

Course comment:

Homework is posted after every class to our course website.

Today's homework needs to be submitted online before 1/14.