
Sketch of Lecture 22 Wed, 3/7/2018

More details on the spectral theorem

Let us add hv ;wi to our notations for the dot product: hv ;wi=vTw= v �w.

� In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:
hv;wi= 1

4
(kv+wk2¡kv¡wk2). See Example 19.

� Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A
such that A=AT) are of interest.
For any matrix A, hAv ;wi= hv ; ATwi.
It follows that, a matrix A is symmetric if and only if hAv;wi= hv; Awi for all vectors v;w.

� Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with QTQ= I).
Then, hQv; Qwi= hv ;wi.
In fact, a matrix A is orthogonal if and only if hAv; Awi= hv ;wi for all vectors v;w.
Comment. We observed in Example 77 that orthogonal matrices Q correspond to rotations (detQ=1)
or re�ections (detQ=¡1) [or products thereof]. The equality hQv; Qwi= hv ;wi encodes the fact
that these types (and only these!) of geometric transformations preserve angles and lengths.

(Spectral theorem)
Every symmetric n�n matrix A can be decomposed as A=PDPT , where

� D is a diagonal matrix, (n�n)

The diagonal entries �i are the eigenvalues of A.

� P is orthogonal. (n�n)

The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.

Let us prove that, indeed, the eigenspaces of a symmetric matrix are orthogonal:

Example 109. Suppose A is symmetric. Show that the eigenspaces of A are orthogonal.

Solution. We need to show that, if v andw are eigenvectors of A with di�erent eigenvalues, then hv ;wi=0.
Suppose that Av=�v and Aw= �w with �=/ �.

Then, �hv;wi= h�v ;wi= hAv;wi= hv; ATwi= hv ; Awi= hv; �wi= �hv;wi.
However, since �=/ �, �hv;wi= �hv;wi is only possible if hv ;wi=0.

Example 110. By the spectral theorem, every symmetric matrix A can be written as A =

VDV T for a diagonal matrix D and an orthogonal matrix V . What about A¡1?

Solution. Recall that (AB)¡1=B¡1A¡1, for any two invertible matrices A;B.

If A=VDV T , then A¡1=(V T )¡1D¡1V ¡1. Since V ¡1=V T , this simpli�es to A¡1= VD¡1V T .

Comment. Likewise, An=VDn V T .
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Singular value decomposition

(Singular value decomposition)
Every m�n matrix A can be decomposed as A=U�V T , where

� � is a (rectangular) diagonal matrix with nonnegative entries, (m�n)

The diagonal entries �i are called the singular values of A.

� U is orthogonal, (m�m)

� V is orthogonal. (n�n)

Comment. If A is symmetric, then the singular value decomposition is already provided by the spectral
theorem (the diagonalization of A). Moreover, in that case, V =U .

Important observations. If A=U�V T , then ATA=V �T�V T .

� Note that �T� is an n�n diagonal matrix. Its entries are �i2 (the squares of the entries in �).

� ATA is a symmetric matrix! (Why?!) Hence, by the spectral theorem, we are able to �nd V and �T�.

In other words, V is obtained from the (orthonormally chosen) eigenvectors of ATA. Likewise, the entries of
�T� are the eigenvalues of ATA; their square roots are the entries of �, the singular values.
Finally, the equation AV =U� allows us to determine U . How?! (Hint: Avi= �iui)

This results in the following recipe to determine the SVD A=U�V T for any matrix A.
Find an orthonormal basis of eigenvectors vi of ATA. Let �i be the eigenvalue of vi.

� V is the matrix with columns vi.

� � is the diagonal matrix with entries �i= �i
p

.

� U is the matrix with columns ui=
1

�i
Avi. If needed, �ll in additional columns to make U orthogonal.
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