Sketch of Lecture 22 Wed, 3/7/2018

| More details on the spectral theorem |

Let us add (v, w) to our notations for the dot product: (v, w) =viw="v w.

e In our story of orthogonality, the important player has been the dot product. However, one could argue
that the fundamental quantity is actually the norm:

(v, w) :%(||v+w||2— |lv —wl/?). See Example 19.

e Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A
such that A= AT) are of interest.

For any matrix A, (Av,w) = (v, ATw).

It follows that, a matrix A is symmetric if and only if (Av, w) = (v, Aw) for all vectors v, w.

e Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with Q7Q =1).
Then, (Qv, Qw) = (v, w).
In fact, a matrix A is orthogonal if and only if (Av, Aw) = (v, w) for all vectors v, w.

Comment. We observed in Example 77 that orthogonal matrices @) correspond to rotations (det Q =1)
or reflections (det @Q = —1) [or products thereof]. The equality (Qv, Qw) = (v, w) encodes the fact
that these types (and only these!) of geometric transformations preserve angles and lengths.

(Spectral theorem)
Every symmetric n x n matrix A can be decomposed as A= PD PT, where

e D is a diagonal matrix, (nxn)

The diagonal entries \; are the eigenvalues of A.

e P is orthogonal. (n xn)

The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real,
and, most importantly, the eigenspaces of A are orthogonal.

Let us prove that, indeed, the eigenspaces of a symmetric matrix are orthogonal:

Example 109. Suppose A is symmetric. Show that the eigenspaces of A are orthogonal.
Solution. We need to show that, if v and w are eigenvectors of A with different eigenvalues, then (v, w) =0.
Suppose that Av =A\v and Aw = pw with \ #£ p.

Then, A (v, w) = v, w) = (Av,w) = (v, ATw) = (v, Aw) = (v, pw) = p(v,w).
However, since A # p, A(v,w) = p(v,w) is only possible if (v, >:O

Example 110. By the spectral theorem, every symmetric matrix A can be written as A =
VDV for a diagonal matrix D and an orthogonal matrix V. What about A~'?

Solution. Recall that (AB)~'=B~1A~1, for any two invertible matrices A, B.
If A=VDVT, then A=l =(VT)=1D=1V~1 Since V="' =VT7, this simplifies to A~ =VD~ VT,
Comment. Likewise, A» =VD" VT,
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Singular value decomposition

(Singular value decomposition)
Every m x n matrix A can be decomposed as A=UXV ", where

e Y is a (rectangular) diagonal matrix with nonnegative entries, (m xn)

The diagonal entries o; are called the singular values of A.
e U is orthogonal, (m x m)

e V is orthogonal. (nxn)

Comment. If A is symmetric, then the singular value decomposition is already provided by the spectral
theorem (the diagonalization of A). Moreover, in that case, V =U.

Important observations. If A=UXV7T, then ATA=VETSVT,
e Note that 7S is an n x n diagonal matrix. Its entries are o7 (the squares of the entries in X).
e ATAis a symmetric matrix! (Why?!) Hence, by the spectral theorem, we are able to find V and ©7%.

In other words, V is obtained from the (orthonormally chosen) eigenvectors of ATA. Likewise, the entries of
ST are the eigenvalues of ATA; their square roots are the entries of X, the singular values.

Finally, the equation AV =UX allows us to determine U. How?! (Hint: Av; = o,u;)

This results in the following recipe to determine the SVD A=UXV7 for any matrix A.

Find an orthonormal basis of eigenvectors v; of ATA. Let \; be the eigenvalue of v;.
e V is the matrix with columns v;.

e X is the diagonal matrix with entries o; =/ ;.

e U is the matrix with columns ui:£Avi. If needed, fill in additional columns to make U orthogonal.
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