More details on the spectral theorem

Let us add $\langle \boldsymbol{v}, \boldsymbol{w} \rangle$ to our notations for the dot product: $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = \boldsymbol{v}^T \boldsymbol{w} = \boldsymbol{v} \cdot \boldsymbol{w}$.

- In our story of orthogonality, the important player has been the dot product. However, one could argue that the fundamental quantity is actually the norm:
 ⟨v, w⟩ = ¹/₄(||v + w||² ||v w||²). See Example 19.
- Accepting the dot product as immensely important, we see that symmetric matrices (i.e. matrices A such that A = A^T) are of interest.
 For any matrix A, (Av, w) = (v, A^Tw).
 It follows that, a matrix A is symmetric if and only if (Av, w) = (v, Aw) for all vectors v, w.
- Similarly, let Q be an orthogonal matrix (i.e. Q is a square matrix with Q^TQ = I). Then, ⟨Qv, Qw⟩ = ⟨v, w⟩.
 In fact, a matrix A is orthogonal if and only if ⟨Av, Aw⟩ = ⟨v, w⟩ for all vectors v, w.
 Comment. We observed in Example 77 that orthogonal matrices Q correspond to rotations (det Q = 1) or reflections (det Q = -1) [or products thereof]. The equality ⟨Qv, Qw⟩ = ⟨v, w⟩ encodes the fact that these types (and only these!) of geometric transformations preserve angles and lengths.

(Spectral theorem)

Every symmetric $n \times n$ matrix A can be decomposed as $A = PDP^T$, where • D is a diagonal matrix, $(n \times n)$ The diagonal entries λ_i are the eigenvalues of A. • P is orthogonal. $(n \times n)$ The columns of P are eigenvectors of A.

Note that, in particular, A is always diagonalizable, the eigenvalues (and hence, the eigenvectors) are all real, and, most importantly, the eigenspaces of A are orthogonal.

Let us prove that, indeed, the eigenspaces of a symmetric matrix are orthogonal:

Example 109. Suppose A is symmetric. Show that the eigenspaces of A are orthogonal.

Solution. We need to show that, if v and w are eigenvectors of A with different eigenvalues, then $\langle v, w \rangle = 0$. Suppose that $Av = \lambda v$ and $Aw = \mu w$ with $\lambda \neq \mu$.

Then, $\lambda \langle \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \lambda \boldsymbol{v}, \boldsymbol{w} \rangle = \langle A \boldsymbol{v}, \boldsymbol{w} \rangle = \langle \boldsymbol{v}, A^T \boldsymbol{w} \rangle = \langle \boldsymbol{v}, A \boldsymbol{w} \rangle = \langle \boldsymbol{v}, \mu \boldsymbol{w} \rangle = \mu \langle \boldsymbol{v}, \boldsymbol{w} \rangle$. However, since $\lambda \neq \mu$, $\lambda \langle \boldsymbol{v}, \boldsymbol{w} \rangle = \mu \langle \boldsymbol{v}, \boldsymbol{w} \rangle$ is only possible if $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0$.

Example 110. By the spectral theorem, every symmetric matrix A can be written as $A = VDV^T$ for a diagonal matrix D and an orthogonal matrix V. What about A^{-1} ?

Solution. Recall that $(AB)^{-1} = B^{-1}A^{-1}$, for any two invertible matrices A, B. If $A = VDV^T$, then $A^{-1} = (V^T)^{-1}D^{-1}V^{-1}$. Since $V^{-1} = V^T$, this simplifies to $A^{-1} = VD^{-1}V^T$. Comment. Likewise, $A^n = VD^nV^T$.

Singular value decomposition

(Singular value decomposition)	
Every $m \times n$ matrix A can be decomposed as $A = U\Sigma V^T$, where	
• Σ is a (rectangular) diagonal matrix with nonnegative entries, The diagonal entries σ_i are called the singular values of A .	(m imes n)
• U is orthogonal,	(m imes m)
• V is orthogonal.	(n imes n)

Comment. If A is symmetric, then the singular value decomposition is already provided by the spectral theorem (the diagonalization of A). Moreover, in that case, V = U. **Important observations.** If $A = U\Sigma V^T$, then $A^T A = V\Sigma^T \Sigma V^T$.

- Note that $\Sigma^T \Sigma$ is an $n \times n$ diagonal matrix. Its entries are σ_i^2 (the squares of the entries in Σ).
- $A^T A$ is a symmetric matrix! (Why?!) Hence, by the spectral theorem, we are able to find V and $\Sigma^T \Sigma$.

In other words, V is obtained from the (orthonormally chosen) eigenvectors of $A^T A$. Likewise, the entries of $\Sigma^T \Sigma$ are the eigenvalues of $A^T A$; their square roots are the entries of Σ , the singular values. Finally, the equation $AV = U\Sigma$ allows us to determine U. How?! (Hint: $Av_i = \sigma_i u_i$)

This results in the following **recipe** to determine the SVD $A = U\Sigma V^T$ for any matrix A. Find an orthonormal basis of eigenvectors v_i of $A^T A$. Let λ_i be the eigenvalue of v_i .

- V is the matrix with columns v_i .
- Σ is the diagonal matrix with entries $\sigma_i = \sqrt{\lambda_i}$.
- U is the matrix with columns $u_i = \frac{1}{\sigma_i} A v_i$. If needed, fill in additional columns to make U orthogonal.