Sketch of Lecture 30

Example 163. Consider the graph to the right. Determine its edge-node incidence matrix M.

- (a) What are dim null(M) and dim null (M^T) ?
- (b) Give bases for $\operatorname{null}(M)$ and $\operatorname{null}(M^T)$.

Solution. The edge-node incidence matrix is

	-1	1	0	0	0	0	0
M =	-1	0	1	0	0	0	0
	0	-1	1	0	0	0	0
	0	-1	0	0	1	0	0
	0	0	-1	0	0	1	0
	0	0	0	0	-1	1	0

(a) The graph has 3 connected components. Hence, $\dim \operatorname{null}(M) = 3$. The graph has 2 independent loops. Hence, $\dim \operatorname{null}(M^T) = 2$.

Definition 164. Let G be a (directed) graph n nodes. The **adjacency matrix** of G is the $n \times n$ matrix A with

 $A_{i,j} = \begin{cases} 1, & \text{if there is an edge from node } i \text{ to node } j, \\ 0, & \text{otherwise.} \end{cases}$

Comment. In the case of an undirected graph, each edge is treated as being directed both ways. Consequently, the entries $A_{i,j}$ and $A_{j,i}$ are the same, so that the matrix A is symmetric.

Example 165. Determine the adjacency matrix for the graph in Example 163.

Solution. Since there is 7 nodes, the adjacency matrix A is a 7×7 matrix. Since there are 6 edges, this matrix has 6 entries which are 1 (and all other entries are 0).

If A is the adjacency matrix of a graph, then the power A^n has an interesting interpretation:

 $(A^n)_{i,j} = \#$ of paths from node *i* to node *j* along exactly *n* edges

Why? Can you see why this is true for A^2 ? (Then, the general statement follows inductively.)

Recall that matrix multiplication works in such a way that the entry $(A^2)_{i,j}$ is computed as the dot product of the *i*th row of A with the *j*th column of A.

The *i*th row of A encodes edges from node i, whereas the *j*th column of A encodes edges into node j. Hence, the dot product gives all possibilities going from node i via an edge to some node k, and then from k via another edge to node j. (This takes some pondering!)

Example 166. Compute A^2 for the adjacency matrix from the previous example. Compare with the interpretation as numbers of 2-edge paths.

Solution.

	0	1	1	0	0	0	0	0	1	1	0	0	0	0		0	0	1	0	1	1	0	L
	0	0	1	0	1	0	0	0	0	1	0	1	0	0		0	0	0	0	0	2	0	ł
	0	0	0	0	0	1	0	0	0	0	0	0	1	0		0	0	0	0	0	0	0	l
$A^2 =$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	=	0	0	0	0	0	0	0	l
	0	0	0	0	0	1	0	0	0	0	0	0	1	0		0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	ł
	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	

The entry $(A^2)_{1,3}$ is 1 because there is 1 path along 2 edges from node 1 to node 3: $1 \rightarrow 2 \rightarrow 3$ (namely the path via node 2). On the other hand, $(A^2)_{3,1} = 0$ because there is no 2-edge path from node 3 to node 1. $(A^2)_{2,6} = 2$ because there is 2 paths along 2 edges from node 2 to node 6: $2 \rightarrow 3 \rightarrow 6$, $2 \rightarrow 5 \rightarrow 6$.

Example 167. (homework) Determine the adjacency matrix A for the graph to the right. Then compute A^2 and compare with the interpretation as numbers of 2-edge paths. What is $(A^3)_{1,1}$?

Solution. The adjacency matrix is

 $A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Comment. Because this is an undirected graph, each of the six edges gives rise to two entries which are 1.

For instance, $(A^2)_{3,5} = 2$ because there is 2 paths along 2 edges from node 3 to node $5: 3 \rightarrow 2 \rightarrow 5, 3 \rightarrow 6 \rightarrow 5$. Likewise, $(A^2)_{2,2} = 3$ because there is 3 paths along 2 edges from node 2 to node $2: 2 \rightarrow 1 \rightarrow 2, 2 \rightarrow 5 \rightarrow 2, 2 \rightarrow 3 \rightarrow 2$.

Finally, $(A^3)_{1,1} = 2$ because the 3-edge paths from node 1 to node 1 are $1 \rightarrow 2 \rightarrow 3 \rightarrow 1$ and $1 \rightarrow 3 \rightarrow 2 \rightarrow 1$.