
Sketch of Lecture 28 Fri, 3/31/2017

Example 155. (warmup) The spectral theorem says that symmetric (real) n�n matrices are
always diagonalizable, have real eigenvalues, and orthogonal eigenspaces.

Why is it (strictly speaking) incorrect to say that the eigenvectors are orthogonal?

Solution. Think, for instance, of the symmetric matrix A =
�
0 0
0 0

�
. Its eigenvalues are 0; 0, and the 0-

eigenspace is R2 (make sure these statements are obvious!).
In other words, all vectors are eigenvectors but certainly it is false that all vectors are orthogonal.

(For instance, take
�
1
1

�
,
�
2
1

�
.)

Correct statements involving the eigenvectors are:

� Eigenvectors with di�erent eigenvalues are orthogonal.

� We can choose an orthogonal basis for Rn consisting of eigenvectors.

9 Application: directed graphs
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(Directed) graphs appear in countless applica-
tions, obviously including network and circuit
analysis.

� The arrows (�direction of �ow�) are
what makes the graph directed.

� In our discussion, we will allow no edges
from a node to itself (no �self-loops�),
and at most one edge between nodes
(no �multi-edges�).

De�nition 156. Let G be a graph with m edges and n nodes.

The edge-node incidence matrix of G is the m�n matrix A with

Ai;j=

8<: ¡1; if edge i leaves node j ;
+1; if edge i enters node j ;
0; otherwise:

Example 157. Determine the edge-node incidence matrix A of the graph G above.

Solution. A=

266664
¡1 1 0 0
¡1 0 1 0
0 ¡1 1 0
0 ¡1 0 1
0 0 ¡1 1

377775
Observations. Each column represents a node, and each row represents an edge.
For instance, the �rst column represents the �rst node, which has two outgoing edges (namely, #1 and #2)
corresponding to the two ¡1's.
As a consequence, each row (edge) has exactly two entries, one ¡1 (start node), one +1 (end node).
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9.1 Meaning of the (right) null space

The x in Ax is assigning values to each node.
You may think of assigning potentials to each node. In our running example:

Ax=

266664
¡1 1 0 0
¡1 0 1 0
0 ¡1 1 0
0 ¡1 0 1
0 0 ¡1 1

377775
2664
x1
x2
x3
x4

3775=
266664
¡x1+x2
¡x1+x3
¡x2+x3
¡x2+x4
¡x3+x4

377775
Crucial observation. Ax=0 () x assigns the same value to nodes connected by an edge
As a consequence, x assigns the same value to nodes that are connected in any way (via a path of edges).

Example. In our running example, dimnull(A)= 1 and null(A) is spanned by

2664
1
1
1
1

3775.
This re�ects the fact that our graph is connected: that is, each node connects to every other node by a
sequence of edges.

(nullspace of edge-node incidence matrix)
dimnull(A) is the number of connected components.
In particular, the graph is connected if and only if dimnull(A)= 1.

Comment. For large graphs, disconnection is not something you can just see by looking at a graph.
But, now, we can always �nd out by computing dimnull(A) using Gaussian elimination!

Example 158. (homework) Consider the graph to the right. Determine its
edge-node incidence matrix A. Give a basis for null(A). What do we conclude?

Solution. The edge-node incidence matrix is A=
�
¡1 0 1 0
0 ¡1 0 1

�
.

null(A) has the basis:

2664
1
0
1
0

3775,
2664
0
1
0
1

3775. (Do it!)

Since null(A) is not spanned by [1;1; 1;1]T , we conclude that the graph is not connected.
From dimnull(A)= 2, we actually know that the graph has 2 connected components.
In fact, from our basis, we can even read o� which nodes belong to each connected
component (#1, #3 in one, and #2, #4 in the other).
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