
Sketch of Lecture 19 Mon, 2/27/2017

Recall that a point (x; y) can be represented using polar coordinates (r; �), where r is the
distance to the origin and � is the angle with the x-axis.
Then, x= r cos� and y= r sin�.

Every complex number z can be written in polar form as z= rei�, with r= jz j.

Why? By comparing with the usual polar coordinates (x = r cos� and y = r sin�), it only makes sense to
write z=x+ iy as z= rei� if rei�= r cos�+ ir sin�. This is Euler's identity:

Theorem 104. (Euler's identity) ei�= cos(�)+ i sin(�)

Why? See below for one approach to making sense of this connection between the exponential and the
trigonometric functions.
Comment. The special case �=� results in the enigmatic formulas e�i=¡1 or e�i+1=0, the latter relating
all �ve of the most fundamental mathematical constants (2 is not fundamental because 2=1+1).

Example 105. (multiplication of complex numbers) This gives a geometric interpretation
of what multiplication of complex numbers means:

z1 � z2=(r1 e
i�1)(r2 e

i�2)= (r1r2) e
i(�1+�2):

In words, the magnitudes multiply (as for positive real numbers), and the angles add up.

In particular, what is the geometric interpretation of multiplying with i?
Solution. Multiplication with i=1 � ei�/2 does not change the magnitude but adds �/2 to the angle.
In other words, multiplication with i is a 90� rotation.

Example 106. (trig identities) Euler's identity is the mother of all trig identities! Here is just
two examples:

� Take the absolute value on both sides to get jei� j2

1

= jcos�+ i sin� j= cos2�+ sin2�.

� Use (ei�)2= e2i� and compare

(ei�)2 = (cos(�)+ i sin(�))2=(cos2�¡ sin2�) + 2i cos� sin�;
e2i� = cos(2�)+ i sin(2�)

to conclude cos(2�) = cos2�¡ sin2�=2cos2�¡ 1 and sin(2�) = 2cos�sin�.

Why? One way to see why Euler's identity holds is if you recall Taylor series from Calculus II.
Every nice function f(x) can be written as

P
n=0
1 anx

n (this is the Taylor series around 0, and an are the
Taylor coe�cients; you might even recall that these can be obtained as an= f(n)(0)/n!).
y(x)= ex is characterized by y 0= y, y(0)= 1. (We will discuss di�erential equations more soon!)
If y(x) =

P
n=0
1 anxn, then a0= y(0)= 1. Further, y 0(x) =

P
n=1
1 nanxn¡1=

P
n=0
1 (n+1)an+1xn, and

we obtain from y 0= y that an=(n+1)an+1. We conclude an=1/n! (do you see how?!).
[By the way, this is called the Frobenius method for �nding analytic solutions of linear di�erential equations.]
Hence, ex=

P
n=0
1 xn

n!
and we can use this to also compute with complex numbers!

ei�=
X
n=0

1
(i�)n

n!
=
X
n=0

1
i2n�2n

(2n)!
+
X
n=0

1
i2n+1�2n+1

(2n+1)!
=
X
n=0

1
(¡1)n�2n
(2n)!

+ i
X
n=0

1
(¡1)n�2n+1
(2n+1)!

=cos(�)+ i sin(�)

In the last step, we recognized the Taylor series of cos and sin. [i2n=(¡1)n, i2n+1=(¡1)n i]
(Which, again, you can also derive from scratch similar to how we derived the one for ex.)
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