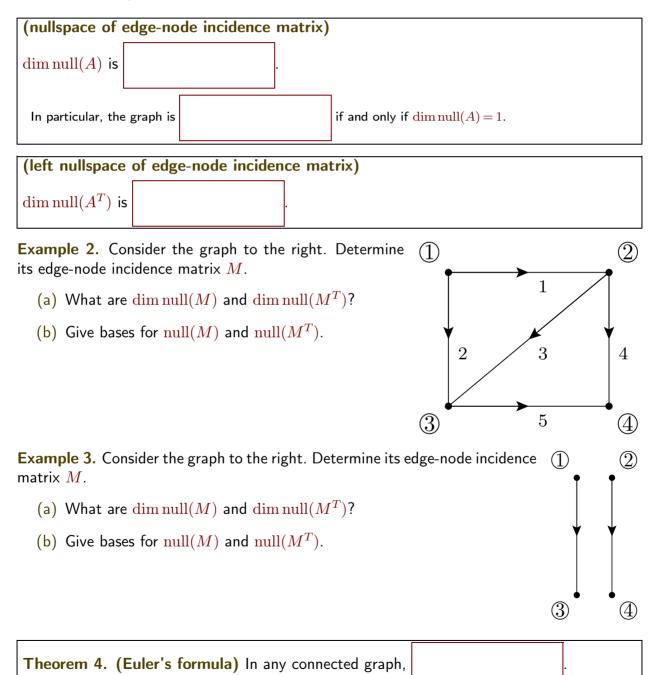
## **1** Preparing for the Final Exam

- The following problems are just a supplement to the practice problems for Midterm 1 and Midterm 2. The final exam will be comprehensive.
- These problems are taken from the lectures. You can find solutions to all of these in the lecture sketches.
- I will also post additional practice problems before the end of the week.

**Example 1.** Why is it (strictly speaking) incorrect to say that the eigenvectors of a symmetric matrix are orthogonal?



**Example 5.** Consider the graph to the right. Determine its edgenode incidence matrix M.

- (a) What are dim null(M) and dim null $(M^T)$ ?
- (b) Give bases for  $\operatorname{null}(M)$  and  $\operatorname{null}(M^T)$ .

**Example 6.** Consider a fixed population of people with or without active immunization against some disease (like tetanus). Suppose that, each year, 40% of those unprotected get vaccinated while 10% of those with immunization lose their protection.

What is the immunization rate in the long run? (The long term equilibrium.)

**Example 7.** Consider a fixed population of people with or without a job. Suppose that, each year, 50% of those unemployed find a job while 10% of those employed lose their job. What is the unemployment rate in the long term equilibrium?

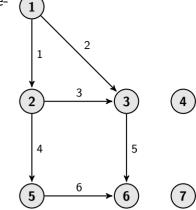
**Example 8.** Suppose the internet consists of only the three webpages A, B, C which link to each other as indicated in the diagram. Rank these webpages by computing their PageRank vector.

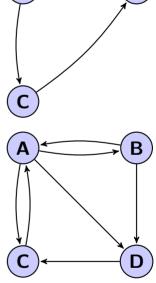
**Example 9.** Suppose the internet consists of only the four webpages A, B, C, D which link to each other as indicated in the diagram. Rank these webpages by computing their PageRank vector.

**Example 10.** True or false?  $A^T$  has the same eigenvalues as A.

**Example 11.** Which of the following sets are vector spaces?

- (a) The set of all functions  $\mathbb{R} \to \mathbb{R}$ .
- (b) The set of all functions  $f: \mathbb{R} \to \mathbb{R}$  such that f(1) = 0.
- (c) The set of all functions  $f: \mathbb{R} \to \mathbb{R}$  such that f(0) = 1.
- (d) The set of all functions  $f: \mathbb{R} \to \mathbb{R}$  such that f is differentiable.





Β

**Example 12.** Which of the following sets are vector spaces? For those that are vector spaces, what is the dimension?

- (a) The set of all polynomials (with, say, real coefficients).
- (b) The set of all polynomials p(x) such that p(1) = 0.
- (c) The set of all polynomials p(x) such that p(0) = 1.
- (d) The set of all polynomials of degree (exactly) 2.
- (e) The set of all polynomials of degree 2 or less.
- (f) The set of all polynomials p(x) of degree 2 or less such that p(3) = 0.

**Example 13.** Give a basis for the space of all polynomials of degree 3 or less.

**Example 14.** Give a basis for the space of all polynomials p(x) of degree 2 or less such that p(3) = 0.

**Example 15.** Give a basis for the space of all polynomials p(x) of degree 3 or less such that p(1) = 0 and p'(1) = 0.

On the space of, say, (piecewise) continuous functions  $f:[a,b] \to \mathbb{R}$ , it is natural to consider the dot product



**Example 16.** What is the orthogonal projection of  $f: [a, b] \to \mathbb{R}$  onto the space of constant functions (that is, span{1})?

**Example 17.** Find the best approximation of  $f(x) = \sqrt{x}$  on the interval [0,1] using a function of the form y = ax.

**Example 18.** Find the best approximation of  $f(x) = \sqrt{x}$  on the interval [0,1] using a function of the form y = a + bx.

**Example 19.** Find the best approximation of  $f(x) = e^x$  on the interval [0, 1] using a function of the form y = ax + b.