Notes for Lecture 8 Fri, 1/30/2026

\ Preview: A system of recurrence equations equivalent to the Fibonacci recurrence

Example 54. We model rabbit reproduction as follows.

Each month, every pair of adult rabbits pro- -

duces one pair of baby rabbit as offspring. |adu|t rabbit| 1 baby rabbit
Meanwhile, it takes baby rabbits one month Y —

to mature to adults. 1

Comment. In this simplified model, rabbits always come in male/female pairs and no rabbits die. Though these
features might make it sound fairly useless, the model may have some merit when describing populations under
ideal conditions (unlimited resources) and over short time (no deaths).

Historical comment. The question how many rabbits there are after one year, when starting out with a pair of
baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa, known
as Fibonacci.

If we start with one baby rabbit pair, how many adult rabbit pairs are there after n months?

Solution. Let a,, be the number of adult rabbit pairs after n months. Likewise, b,, is the number of baby rabbit
pairs. The transition from one month to the next is given by a,,+1=a, + b, and by, 41 =a,. Using b, =a, 1
(from the second equation) in the first equation, we obtain an4+1=an+ an_1.

The initial conditions are ag=0 and a1 =1 (the latter follows from bg=1).
It follows that the number b,, of adult rabbit pairs are precisely the Fibonacci numbers F,.

Comment. Note that the transition from one month to the next is described by in matrix-vector form as

ALl ]

iy . _[11 . _fo
Writing an:{ Z” ], this becomes a,, 1 —[ 10 ]an with ao—[ 1 }

An+1
bn+1

Consequently, an:[ 1 (1) ]naoz[ } (1) ]"{ (1) ]

Looking ahead. Can you see how, starting with the Fibonacci recurrence F), o = F,, 11 + F},

we can arrive at this same system?
—| Frir+Fo | {1 1| Faya || 1 11,
- Foia 110 F, |7 |10]™™

Solution. Set an:[ F;;l ] Then a,, 11 = Frpo

n

Fpia
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Systems of recurrence equations

Example 55. (review) Consider the sequence a,, defined by a,, 2 = 4a,, — 3a,4+1 and ag =1,

. . a 1
a1 =2. Determine lim —2*1

n—oo Ap

Solution. The recursion can be written as p(N)a,, =0 where p(N) = N2+ 3N — 4 has roots 1, —4. Hence, the
general solution is a,, = C1 + Cy - (—4)™. We can see that both roots have to be involved in the solution (in other
words, C1 # 0 and C # 0) because a,, = C1 and a,, = C - (—4)"™ are not consistent with the initial conditions.

We conclude that lim 2tl—_4 (because |—4| > |1]).

n—oo Qn

Example 56. Write the (second-order) RE a,,42=4a,, — 3a,,+1, with ag=1, a; =2, as a system
of (first-order) recurrences.

Solution. Write b,, = a4 1.

an+1= bn

Then, a,,42=4a, — 3a, 41 translates into the first-order system {bn—l—l — da,, — 3b,"

Let a,, = ZZ } Then, in matrix form, the RE is an_,_l:[ 2 _13 }an, with aoz[ ; ]
Equivalently. Write a,, = aa” . Then we obtain the above system as
n—+1
_ | Gn41 an4+1 _ 0 1 (e7%) _ 0 1 _ 1
W= anyo || 4an—3an 4 _{ 4 -3 ] — _{ 4 =3 | WT| 2

Comment. It follows that a, =

5 ]nao = [2 _13 }n[ ; ] Solving (systems of) REs is equivalent to

computing powers of matrices!
an41

n

an42 | _ | 4an—3an+1 | _| =3 4 || any1 | _| =3 4 a an— 2
ant1 | Ant1 110 an | | 1 0™ 0=l 1 I
Comment. Recall that the characteristic polynomial of a matrix M is det(M — XI'). Compute the characteristic

polynomial of both M = [ 2 _13 } and M = [ _13 g ] In both cases, we get A2 + 3\ — 4, which matches the

polynomial p(NN) (also called characteristic polynomial!) in the previous example. This will always happen and
explains why both are referred to as the characteristic polynomial.

Comment. We could also write a,, = { } (with the order of the entries reversed). In that case, the system is

an41=

Example 57. Write a,, 13— 4a,, 12+ @41+ 6a, =0 as a system of (first-order) recurrences.

an
Solution. Write a,,=| apn+1 |- Then we obtain the system
An 42
an4+1 an+1 0 1 0 An 0 1 0
Anp41=| An42 | = An+2 - 0 0 1 An+1 - 0 0 1 an,.
An+3 4an4+2—ap41—6an —6 —1 4 An 42 —6 —1 4

In summary, the RE in matrix form is a,,+1 = Ma,, with M the matrix above.

Important comment. Given a first-order system a,,+1 = Ma,, it is clear that the solution satisfies a,, = M "ay.

If you know how to compute matrix powers M ™, this means you can solve recurrences! On the other hand, we
will proceed the other way around. We solve the recurrence and then use that to determine M ™.
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\ Solving systems of recurrence equations

The following summarizes how we can solve systems of recurrence equations using eigenvectors.
As a bonus, we obtain a way to compute matrix powers.

Each step is spelled out in Example 58 below.

(solving systems of REs) To solve a,,+1 = Ma,, determine the eigenvectors of M.
e Each \-eigenvector v provides a solution: a,, = v A" [assuming that A = 0]

e If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) ®,, by placing each solution
vector into one column of ®,,.

e If desired, we can compute the matrix powers M ™ using any fundamental matrix ®,, as
M"=d,0,".

Note that M™ is the unique matrix solution to a,4+1= Ma, with ag =1 (the identity matrix).

Application: the unique solution to a,,.1 = Ma,, ay=c is given by a,, = M"c.

Why? If a,,=v\" for a A-eigenvector v, then a,, 1= A"t and Ma,, = Mo\" = v- A" = v\ 1,
Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the
form cr™ where r #£0 is a root of the characteristic polynomials. To solve a,, -1 = M ay, it is therefore natural
to look for solutions of the form a,, = cr™ (where c= [ :; }) Note that a,, 1= crtl=ra,,.

Plugging into a,, 1 = Ma,, we find cr" 1 = Mcr™.

Cancelling ™ (just a nonzero number!), this simplifies to rc = Me.

In other words, a,, = cr™ is a solution if and only if ¢ is an r-eigenvector of M.

Not enough eigenvectors? In that case, we know what to do as well (at least in principle): instead of looking
only for solutions of the type a,, = v\", we also need to look for solutions of the type a,, = (vn + w)\™. Note
that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Matrix solutions. A matrix ®,, is a matrix solution to a,, +1 = May, if ®,,4.1 =M P,,. ,, being a matrix solution
is equivalent to each column of ®,, being a normal (vector) solution. If the general solution of a, 1 = Ma,
can be obtained as the linear combination of the columns of ®,,, then ®,, is a fundamental matrix solution.

Why can we compute matrix powers this way? Recall that, given a first-order system a,+1 = Ma,, it is
clear that the solution satisfies a,, = M "a. Likewise, a fundamental matrix solution ®,, to the same recurrence
satisfies ®,, = M "®q. Multiplying both sides by <I>0_1 (on the right!) we conclude that Canbo_l =M.

Already know how to compute matrix powers? If you have taken linear algebra classes, you may have learned
that matrix powers M™ can be computed by diagonalizing the matrix M. The latter hinges on computing
eigenvalues and eigenvectors of M as well. Compare the two approaches!

Example 58. Let M = { i :170 }

(a) Determine the general solution to a,,+1= Ma,,.
(b) Determine a fundamental matrix solution to a,, ;= Ma,,.
(c) Compute M™.

(d) Solve a,,+1=Ma,, G,QZ{ ; }
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Solution.

(a) Recall that each A-eigenvector v of M provides us with a solution: a,, = vA™

We computed in Example 52 that [ f } is an eigenvector for A= 3, and [ } ] is an eigenvector for A = —2.
Hence, the general solution is Cl[ f ]3” + Cg{ 1 ](—2)”.

(b) Note that we can write the general solution as

an=ci[2 e Hom=[ 28 ]

We call @n:{ 2:',)5’“ E:;g: } the corresponding fundamental matrix (solution).
Note that our general solution is precisely ®,,c with c:[ gl }
2

Observations.
(a) The columns of ®,, are (independent) solutions of the system.

(b) @, solves the RE itself: ®,, 41 =MP,.

[Spell this out in this example! That ®,, solves the RE follows from the definition of matrix
multiplication.]

(c) It follows that ®,, = M"™®q. Equivalently, cI)ncpo_l = M". (See next part!)

(c) Note that CIDO:{ i } }, so that <I>0_1 :{ jl ;1 ] It follows that

M”:cpncpolz[zz”" (—2)”“ 1 —1]:{2-3”—(—2)71 —2.3n42(—2)n

3n (=2)" || -1 2 3m—(=2)"  —3n42(=2)"

Check. Let us verify the formula for M™ in the cases n =0 and n = 1:
MO:[ 2—-1 —2+2 }:{ 1 0}

1—1 —1+42 01
1_[2:3—(—2) —2-342(-2)]_[8 —10
M _[ 3—(-2) —-3+2(-2) ]_[5 -7 ]

(@) an=Mrao=[ 2,27 GR 2R [} |=[ ZRG

Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[8,-10],[5,-7]1]1)

>>> M~2

14 —10
5 —1
Verify that this matrix matches what our formula for M™ produces for n =2. In order to reproduce the general
formula for M™, we need to first define n as a symbolic variable:
>>> n = var(’n’)
>>> M™n
23" —(=2)" —=2.3"+2 (—2)"
3 —(=2)" =342 (=2)"

Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and
eigenvectors of M from this formula for M™? Of course, Sage can readily compute these for us directly using,
for instance, M.eigenvectors_right (). Try it! Can you interpret the output?
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