
Notes for Lecture 7 Wed, 1/28/2026

Review. The recurrence an+1=5an has general solution an=C � 5n.
In operator form, the recurrence is (N ¡ 5)an= 0, where p(N) =N ¡ 5 is the characteristic polynomial. The
characteristic root 5 corresponds to the solution 5n.
This is analogous to the case of DEs p(D)y=0 where a root r of p(D) corresponds to the solution erx.

Example 45. (�warmup�) Find the general solution to the recursion an+2=4an+1¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡ 4N +4 has roots 2; 2.
So a solution is 2n and, from our discussion of DEs, it is probably not surprising that a second solution is n �2n.
Hence, the general solution is an=C1 � 2n+C2 �n � 2n=(C1+C2n) � 2n.
Comment. This is analogous to (D¡ 2)2y 0=0 having the general solution y(x)= (C1+C2x)e

2x.
Check! Let's check that an=n � 2n indeed satisfies the recursion (N ¡ 2)2an=0.

(N ¡ 2)n � 2n=(n+1)2n+1¡ 2n � 2n=2n+1, so that (N ¡ 2)2n � 2n=(N ¡ 2)2n+1=0.

Combined, we obtain the following analog of Theorem 20 for recurrence equations (RE):

Comment. Sequences that are solutions to such recurrences are called constant recursive or C-finite.

Theorem 46. Consider the homogeneous linear RE with constant coefficients p(N)an=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the RE are given by njrn for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.

Moreover. If r is the sole largest root by absolute value among the roots contributing to an, then an�Crn
(if r is not repeated�what if it is?) for large n. In particular, it follows that

lim
n!1

an+1
an

= r:

Advanced comment. Things can get weird if there are several roots of the same absolute value. Consider, for
instance, the case an=2n+(¡2)n. Can you see that, in this case, the limit limn!1

an+1
an

doesn't even exist?

Example 47. Find the general solution to the recursion an+3=2an+2+ an+1¡ 2an.
Solution. The recursion can be written as p(N)an= 0 where p(N) =N3¡ 2N2¡N + 2 has roots 2; 1;¡1.
(Here, we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=C1 � 2n+C2+C3 � (¡1)n.

Example 48. Find the general solution to the recursion an+3=3an+2¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N3¡3N2+4 has roots 2;2;¡1. (Again,
we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=(C1+C2n) � 2n+C3 � (¡1)n.
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Theorem 49. (Binet's formula) Fn=
1

5
p
h�

1+ 5
p

2

�n
¡
�
1¡ 5

p

2

�ni
Proof. The recursion Fn+1=Fn+Fn¡1 can be written as p(N)an=0 where p(N)=N2¡N ¡ 1 has roots

�1=
1+ 5

p

2
� 1.618; �2=

1¡ 5
p

2
�¡0.618:

Hence, Fn=C1 ��1n+C2 ��2n and we only need to figure out the two unknowns C1, C2. We can do that using

the two initial conditions: F0=C1+C2=
!
0, F1=C1 �

1+ 5
p

2
+C2 �

1¡ 5
p

2
=
!
1.

Solving, we find C1=
1

5
p and C2=¡ 1

5
p so that, in conclusion, Fn=

1

5
p (�1

n¡�2n), as claimed. �

Comment. For large n, Fn�
1

5
p �1

n (because �2
n becomes very small). In fact, Fn= round

�
1

5
p
�
1+ 5

p

2

�n�
.

Back to the quotient of Fibonacci numbers. In particular, because �1
n dominates �2

n, it is now transparent
that the ratios Fn+1

Fn
approach �1=

1+ 5
p

2
� 1.618. To be precise, note that

Fn+1
Fn

=

1

5
p (�1

n+1¡�2
n+1)

1

5
p (�1

n¡�2n)
=
�1
n+1¡�2

n+1

�1
n¡�2n

=
�1¡�2

�
�2
�1

�n
1¡

�
�2
�1

�n ¡!n!1 �1¡ 0
1¡ 0 =�1:

In fact, it follows from �2 < 0 that the ratios Fn+1
Fn

approach �1 in the alternating fashion that we observed
numerically earlier. Can you see that?

Example 50. Consider the sequence an defined by an+2 = 4an+1 + 9an and a0 = 1, a1 = 2.
Determine lim

n!1

an+1
an

.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡4N ¡9 has roots 4� 52
p

2
�5.6056;

¡1.6056. Both roots have to be involved in the solution in order to get integer values.
We conclude that lim

n!1

an+1
an

=2+ 13
p

� 5.6056 (because j5.6056j> j¡1.6056j).

Example 51. (extra) Consider the sequence an defined by an+2 = 2an+1 + 4an and a0 = 0,
a1=1. Determine lim

n!1

an+1
an

.

First few terms of sequence. 0; 1; 2; 8; 24; 80; 256; 832; :::
These are actually related to Fibonacci numbers. Indeed, an= 2n¡1Fn. Can you prove this directly from the
recursions? Alternatively, this follows from comparing the Binet-like formulas.

Solution. Proceeding as in the previous example, we find lim
n!1

an+1
an

=1+ 5
p
� 3.23607.

Comment. With just a little more work, we find the Binet-like formula an=
(1+ 5

p
)n¡ (1¡ 5

p
)n

2 5
p .
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Crash course: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that, for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A¡�I)= 0.
det(A¡�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A¡�I)x=0.

Example 52. Determine the eigenvalues and eigenvectors of A=
�
8 ¡10
5 ¡7

�
.

Solution. The characteristic polynomial is:

det(A¡�I)=det
��

8¡� ¡10
5 ¡7¡�

��
=(8¡�)(¡7¡�)+ 50=�2¡�¡ 6= (�¡ 3)(�+2)

Hence, the eigenvalues are �=3 and �=¡2.

� To find an eigenvector for �=3, we need to solve
�
5 ¡10
5 ¡10

�
x=0.

Hence, x=
�
2
1

�
is an eigenvector for �=3.

� To find an eigenvector for �=¡2, we need to solve
�
10 ¡10
5 ¡5

�
x=0.

Hence, x=
�
1
1

�
is an eigenvector for �=¡2.

Check!
�
8 ¡10
5 ¡7

��
2
1

�
=
�
6
3

�
=3 �

�
2
1

�
and

�
8 ¡10
5 ¡7

��
1
1

�
=
�
¡2
¡2

�
=¡2 �

�
1
1

�
On the other hand, a random other vector like

�
1
2

�
is not an eigenvector:

�
8 ¡10
5 ¡7

��
1
2

�
=
�
¡12
¡9

�
=/ �

�
1
2

�
.

Example 53. (homework) Determine the eigenvalues and eigenvectors of A=
�
1 ¡6
1 ¡4

�
.

Solution. (final answer only) x=
�
2
1

�
is an eigenvector for �=¡2, and x=

�
3
1

�
is an eigenvector for �=¡1.
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