
Notes for Lecture 1 Mon, 1/13/2025

A crash course in linear algebra

Example 1. A typical 2� 3 matrix is

�
1 2 3
4 5 6

�
.

It is composed of column vectors like
�
2
5

�
and row vectors like [ 1 2 3 ].

Matrices (and vectors) of the same dimensions can be added and multiplied by a scalar:

For instance,
�
1 2 3
4 5 6

�
+

�
1 0 2
2 3 ¡1

�
=

�
2 2 5
6 8 5

�
or 3 �

�
1 2 3
4 5 6

�
=

�
3 6 9
12 15 18

�
.

Remark. More generally, a vector space is an abstraction of a collection of objects that can be
added and scaled: numbers, lists of numbers (like the above row and column vectors), arrays of
numbers (like the above matrices), arrows, functions, polynomials, differential operators, solutions
to homogeneous linear differential equations, :::

Example 2. The transpose AT of A is obtained by interchanging roles of rows and columns.

For instance.
�
1 2 3
4 5 6

�T
=

24 1 4
2 5
3 6

35

Example 3. Matrices of appropriate dimensions can also be multiplied.

This is based on the multiplication [ a b c ]

24 x
y
z

35= ax+ by+ cz of row and column vectors.

For instance.
�
1 ¡1 1
2 1 3

�24 1 0
¡1 1
2 ¡2

35=�
4 ¡3
7 ¡5

�
In general, we can multiply a m�n matrix A with a n� r matrix B to get a m� r matrix AB.

Its entry in row i and column j is defined to be (AB)ij=(row i of A)
24 column

j
of B

35.
Comment. One way to think about the multiplication Ax is that the resulting vector is a linear combination of
the columns of A with coefficients from x. Similarly, we can think of xTA as a combination of the rows of A.

Some nice properties of matrix multiplication are:
� There is an n�n identity matrix I (all entries are zero except the diagonal ones which are 1). It satisfies

AI =A and IA=A.

� The associative law A(BC)= (AB)C holds. Hence, we can write ABC without ambiguity.

� The distributive laws including A(B+C)=AB+AC hold.

Example 4.
�
2 0
0 1

��
1 2
3 4

�
=/
�
1 2
3 4

��
2 0
0 1

�
, so we have no commutative law.

Example 5.
�
3 1
2 1

��
1 ¡1
¡2 3

�
=
�
1 0
0 1

�
On the RHS we have the identity matrix, usually denoted I or I2 (since it's the 2� 2 identity matrix here).

Hence, the two matrices on the left are inverses of each other:
�
3 1
2 1

�¡1
=
�

1 ¡1
¡2 3

�
,
�

1 ¡1
¡2 3

�¡1
=
�
3 1
2 1

�
.
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The inverse A¡1 of a matrix A is characterized by A¡1A= I and AA¡1= I.

Example 6. The following formula immediately gives us the inverse of a 2�2 matrix (if it exists).
It is worth remembering!�

a b
c d

�¡1
= 1
ad¡ bc

�
d ¡b
¡c a

�
provided that ad¡ bc=/ 0

Let's check that! 1

ad¡ bc

�
d ¡b
¡c a

��
a b
c d

�
=

1

ad¡ bc

�
ad¡ bc 0

0 ¡cb+ ad

�
= I2

In particular, a 2� 2 matrix

�
a b
c d

�
is invertible () ad¡ bc=/ 0.

Recall that this is the determinant: det
��

a b
c d

��
= ad¡ bc.

det(A)= 0 () A is not invertible

Example 7. The system 7x1¡ 2x2 = 3
2x1+x2 = 5 is equivalent to

�
7 ¡2
2 1

��
x1
x2

�
=
�
3
5

�
. Solve it.

Solution. Multiplying (from the left!) by
�
7 ¡2
2 1

�¡1
=

1

11

�
1 2
¡2 7

�
produces

�
x1
x2

�
=

1

11

�
1 2
¡2 7

��
3
5

�
=

1

11

�
13
29

�
,

which gives the solution of the original equations.

Example 8. (homework) Solve the system x1+2x2 = 1
3x1+4x2 = ¡ 1 (using a matrix inverse).

Solution. The equations are equivalent to
�
1 2
3 4

��
x1
x2

�
=

�
1
¡1

�
.

Multiplying by
�
1 2
3 4

�¡1
=¡1

2

�
4 ¡2
¡3 1

�
produces

�
x1
x2

�
=¡1

2

�
4 ¡2
¡3 1

��
1
¡1

�
=¡1

2

�
6
¡4

�
=
�
¡3
2

�
.

Example 9. (homework) Solve the system x1+2x2 = 1
3x1+4x2 = 2 (using a matrix inverse).

Solution. The equations are equivalent to
�
1 2
3 4

��
x1
x2

�
=

�
1
2

�
.

Multiplying by
�
1 2
3 4

�¡1
=¡1

2

�
4 ¡2
¡3 1

�
produces

�
x1
x2

�
=¡1

2

�
4 ¡2
¡3 1

��
1
2

�
=¡1

2

�
0
¡1

�
=
�

0
1/2

�
.

Comment. In hindsight, can you see this solution by staring at the equations?
Comment. Note how we can reuse the matrix inverse from the previous example.

The determinant of A, written as det(A) or jAj, is a number with the property that:

det(A)=/ 0 () A is invertible
() Ax= b has a (unique) solution x for all b
() Ax=0 is only solved by x=0

Example 10. det
��

a b
c d

��
= ad¡ bc, which appeared in the formula for the inverse.
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Notes for Lecture 2 Wed, 1/15/2025

Example 11. (review) [ 1 2 3 ]

24 1
2
3

35= [ 14 ] whereas

24 1
2
3

35[ 1 2 3 ]=

24 1 2 3
2 4 6
3 6 9

35.

Review: Examples of differential equations we can solve

Let's start with one of the simplest (and most fundamental) differential equations (DE). It is first-
order (only a first derivative) and linear with constant coefficients.

Example 12. Solve y 0=3y.
Solution. y(x)=Ce3x

Check. Indeed, if y(x)=Ce3x, then y 0(x)= 3Ce3x=3y(x).
Comment. Recall we can always easily check whether a function solves a differential equation. This means that
(although you might be unfamiliar with the techniques for solving) you can use computer algebra systems like
Sage to solve differential equations without trust issues.

To describe a unique solution, additional constraints need to be imposed.

Example 13. Solve the initial value problem (IVP) y 0=3y, y(0)= 5.
Solution. This has the unique solution y(x)= 5e3x.

The following is a nonlinear differential equation. In general, such equations are much more
complicated than linear ones. We can solve this particular one because it is separable.

Example 14. Solve y 0=xy2.

Solution. This DE is separable: 1

y2
dy= xdx. Integrating, we find ¡1

y
=
1

2
x2+C.

Hence, y=¡ 1
1
2
x2+C

=
2

D¡ x2
.

[Here, D=¡2C but that relationship doesn't matter; it only matters that the solution has a free parameter.]
Note. Note that we did not find the solution y=0 (lost when dividing by y2). It is called a singular solution
because it is not part of the general solution (the one-parameter family found above). [Although, we can obtain
it from the general solution by letting D!1.]
Check. Compute y0 and verify that the DE is indeed satisfied.
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Review: Linear DEs

Linear DEs of order n are those that can be written in the form

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y= f(x):

The corresponding homogeneous linear DE is the DE

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y=0;

and it plays an important role in solving the original linear DE.

Important. Note that a linear DE is homogeneous if and only if the zero function y(x)= 0 is a solution.

In terms of D= d

dx
, the original DE becomes: Ly= f(x) where L is the differential operator

L=Dn+Pn¡1(x)Dn¡1+ :::+P1(x)D+P0(x):

The corresponding homogeneous linear DE is Ly=0.

Linear DEs have a lot of structure that makes it possible to understand them more deeply. Most
notably, their general solution always has the following structure:

(general solution of linear DEs) For a linear DE Ly= f(x) of order n, the general solution
always takes the form

y(x)= yp(x)+C1y1(x)+ :::+Cn yn(x);

where yp is any single solution (called a particular solution) and y1; y2; :::; yn are solutions to
the corresponding homogeneous linear DE Ly=0.

Comment. If the linear DE is already homogeneous, then the zero function y(x) = 0 is a solution and we can
use yp=0. In that case, the general solution is of the form y(x)=C1y1+C2y2+ ���+Cnyn.

Why? The key to this is that the differential operator L is linear, meaning that, for any functions f1(x); f2(x)
and any constants c1; c2, we have

L(c1f1(x)+ c2f2(x))= c1L(f1(x))+ c2L(f2(x)):

If this is not clear, consider first a case like L=Dn or work through the next example for the order 2 case.

Example 15. (extra) Suppose that L=D2+P (x)D+Q(x). Verify that the operator L is linear.

Solution. We need to show that the operator L satisfies

L(c1f1(x)+ c2f2(x))= c1L(f1(x))+ c2L(f2(x))

for any functions f1(x); f2(x) and any constants c1; c2. Indeed:

L(c1f1+ c2f2) = (c1f1+ c2f2)
00+P (x)(c1f1+ c2f2)

0+Q(x)(c1f1+ c2f2)

= c1ff100+P (x)f1
0+Q(x)f1g+ c2ff200+P (x)f2

0+Q(x)f2g
= c1 �Lf1+ c2 �Lf2
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Example 16. Consider the following DEs. If linear, write them in operator form as Ly= f(x).

(a) y 00=xy

(b) x2y 00+xy 0=(x2+4)y+x(x2+3)

(c) y 00= y 0+2y+2(1¡x¡x2)

(d) y 00= y 0+2y+2(1¡x¡ y2)

Solution.

(a) This is a homogeneous linear DE: (D2¡ x)
L

y= 0
f(x)

Note. This is known as the Airy equation, which we will meet again later. The general solution is of the
form C1y1(x)+C2y2(x) for two special solutions y1; y2. [In the literature, one usually chooses functions
called Ai(x) and Bi(x) as y1 and y2. See: https://en.wikipedia.org/wiki/Airy_function]

(b) This is an inhomogeneous linear DE: (x2D2+xD¡ (x2+4))

L

y= x(x2+3)

f(x)

Note. The corresponding homogeneous DE is an instance of the �modified Bessel equation� x2y 00 +
xy 0¡ (x2+�2)y=0, namely the case �=2. Because they are important for applications (but cannot
be written in terms of familiar functions), people have introduced names for two special solutions of this
differential equation: I�(x) and K�(x) (called modified Bessel functions of the first and second kind).
It follows that the general solution of the modified Bessel equation is C1I�(x)+C2K�(x).
In our case. The general solution of the homogeneous DE (which is the modified Bessel equation with
� = 2) is C1I2(x) + C2K2(x). On the other hand, we can (do it!) easily check (this is coming from
nowhere at this point!) that yp=¡x is a particular solution to the original inhomogeneous DE.
It follows that the general solution to the original DE is C1I2(x)+C2K2(x)¡ x.

(c) This is an inhomogeneous linear DE: (D2¡D¡ 2)
L

y=2(1¡ x¡ x2)
f(x)

Note. We will recall in Example 17 that the corresponding homogeneous DE (D2 ¡ D ¡ 2)y = 0 has
general solution C1e2x+C2e

¡x. On the other hand, we can check that yp= x2 is a particular solution
of the original inhomogeneous DE. (Do you recall from DE1 how to find this particular solution?)
It follows that the general solution to the original DE is x2+C1e

2x+C2e
¡x.

(d) This is not a linear DE because of the term y2. It cannot be written in the form Ly= f(x).
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Notes for Lecture 3 Fri, 1/17/2025

Homogeneous linear DEs with constant coefficients

Example 17. Find the general solution to y 00¡ y 0¡ 2y=0.
Solution. We recall from Differential Equations I that erx solves this DE for the right choice of r.
Plugging erx into the DE, we get r2erx¡ rerx¡ 2erx=0.
Equivalently, r2¡ r¡ 2=0. This is called the characteristic equation. Its solutions are r=2;¡1.
This means we found the two solutions y1= e2x, y2= e¡x.
Since this a homogeneous linear DE, the general solution is y=C1e

2x+C2e
¡x.

Solution. (operators) y 00¡ y 0¡ 2y=0 is equivalent to (D2¡D¡ 2)y=0.

Note that D2¡D¡ 2= (D¡ 2)(D+1) is the characteristic polynomial.
It follows that we get solutions to (D¡ 2)(D+1)y=0 from (D¡ 2)y=0 and (D+1)y=0.

(D¡ 2)y=0 is solved by y1= e2x, and (D+1)y=0 is solved by y2= e¡x; as in the previous solution.

Example 18. Solve y 00¡ y 0¡ 2y=0 with initial conditions y(0)= 4, y 0(0)=5.
Solution. From the previous example, we know that y(x)=C1e

2x+C2e
¡x.

To match the initial conditions, we need to solve C1+C2=4, 2C1¡C2=5. We find C1=3, C2=1.
Hence the solution is y(x)= 3e2x+ e¡x.

Set D = d

dx
. Every homogeneous linear DE with constant coefficients can be written as

p(D)y=0, where p(D) is a polynomial in D, called the characteristic polynomial.

For instance. y 00¡ y0¡ 2y=0 is equivalent to Ly=0 with L=D2¡D¡ 2.

Example 19. Find the general solution of y 000+7y 00+ 14y 0+8y=0.
Solution. This DE is of the form p(D) y=0 with characteristic polynomial p(D)=D3+7D2+ 14D+8.
The characteristic polynomial factors as p(D)= (D+1)(D+2)(D+4). (Don't worry! You won't be asked to
factor cubic polynomials by hand.)
Hence, by the same argument as in Example 17, we find the solutions y1= e¡x, y2= e¡2x, y3= e¡4x. That's
enough (independent!) solutions for a third-order DE.
The general solution therefore is y(x)=C1 e

¡x+C2 e
¡2x+C3 e

¡4x.

This approach applies to any homogeneous linear DE with constant coefficients!
One issue is that roots might be repeated. In that case, we are currently missing solutions. The following result
provides the missing solutions.

Theorem 20. Consider the homogeneous linear DE with constant coefficients p(D)y=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the DE are given by xjerx for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.
This is because the order of the DE equals the degree of p(D), and a polynomial of degree n has (counting
with multiplicity) exactly n (possibly complex) roots.

In the complex case. If r = a � bi are roots of the characteristic polynomial and if k is its multiplicity, then
2k (independent) real solutions of the DE are given by xjeaxcos(bx) and xjeaxsin(bx) for j=0; 1; :::; k¡ 1.
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Proof. Let r be a root of the characteristic polynomial of multiplicity k. Then p(D)= q(D) (D¡ r)k.
We need to find k solutions to the simpler DE (D¡ r)ky=0.
It is natural to look for solutions of the form y= c(x)erx.
[We know that c(x)= 1 provides a solution. Note that this is the same idea as for variation of constants.]

Note that (D¡ r)[c(x)erx] = (c0(x)erx+ c(x)rerx)¡ rc(x)erx= c0(x)erx.

Repeating, we get (D ¡ r)2[c(x)erx] = (D ¡ r)[c 0(x)erx] = c 00(x)erx and, eventually, (D ¡ r)k[c(x)erx] =

c(k)(x)erx.
In particular, (D¡ r)ky=0 is solved by y= c(x)erx if and only if c(k)(x)= 0.

The DE c(k)(x)=0 is clearly solved by xj for j=0;1; :::;k¡1, and it follows that xjerx solves the original DE. �

Example 21. Find the general solution of y 000=0.
Solution. We know from Calculus that the general solution is y(x)=C1+C2x+C3x

2.

Solution. The characteristic polynomial p(D) =D3 has roots 0; 0; 0. By Theorem 20, we have the solutions
y(x)= xj e0x= xj for j=0; 1; 2, so that the general solution is y(x)=C1+C2x+C3x

2.

Example 22. Find the general solution of y 000¡ y 00¡ 5y 0¡ 3y=0.
Solution. The characteristic polynomial p(D)=D3¡D2¡ 5D¡ 3= (D¡ 3)(D+1)2 has roots 3;¡1;¡1.
By Theorem 20, the general solution is y(x)=C1e

3x+(C2+C3x)e
¡x.

Example 23. Find the general solution of y 00+ y=0.
Solution. The characteristic polynomials is p(D)=D2+1=0 which has no solutions over the reals.
Over the complex numbers, by definition, the roots are i and ¡i.
So the general solution is y(x)=C1 e

ix+C2 e
¡ix.

Solution. On the other hand, we easily check that y1= cos(x) and y2= sin(x) are two solutions.
Hence, the general solution can also be written as y(x)=D1 cos(x)+D2 sin(x).

Important comment. That we have these two different representations is a consequence of Euler's identity

eix= cos(x)+ i sin(x):

Note that e¡ix= cos(x)¡ i sin(x).

On the other hand, cos(x)= 1

2
(eix+ e¡ix) and sin(x)= 1

2i
(eix¡ e¡ix).

[Recall that the first formula is an instance of Re(z)= 1

2
(z+ z�) and the second of Im(z)= 1

2i
(z¡ z�).]

Example 24. Find the general solution of y 00¡ 4y 0+ 13y=0.
Solution. The characteristic polynomial p(D)=D2¡ 4D+ 13 has roots 2+3i; 2¡ 3i.
Hence, the general solution is y(x)=C1e

2xcos(3x)+C2e
2xsin(3x).

Note. e(2+3i)x= e2xe3ix= e2x(cos(3x)+ i sin(3x))
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Notes for Lecture 4 Mon, 1/27/2025

Example 25. (review) Find the general solution of y 000¡ 3y 0+2y=0.
Solution. The characteristic polynomial p(D)=D3¡ 3D+2= (D¡ 1)2(D+2) has roots 1; 1;¡2.
By Theorem 20, the general solution is y(x)= (C1+C2x)e

x+C2e
¡2x.

Example 26. (review) Consider the function y(x)= 7x¡ 5x2e4x. Find an operator p(D) such
that p(D)y=0.
Comment. This is the same as determining a homogeneous linear DE with constant coefficients solved by y(x).

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include 0; 0; 4; 4; 4.

The simplest choice for p(D) thus is p(D)=D2(D¡ 4)3.

Inhomogeneous linear DEs: The method of undetermined coefficients

The method of undetermined coefficients allows us to solve certain inhomogeneous linear DEs
Ly= f(x) with constant coefficients..

It works if f(x) is itself a solution of a homogeneous linear DE with constant coefficients (see previous example).

Example 27. Determine the general solution of y 00+4y= 12x.
Solution. The DE is p(D)y = 12x with p(D) = D2 + 4, which has roots �2i. Thus, the general solution is
y(x)= yp(x)+C1cos(2x)+C2sin(2x). It remains to find a particular solution yp.

Since D2 � (12x)= 0, we apply D2 to both sides of the DE to get the homogeneous DE D2(D2+4) � y=0.
Its general solution is C1+C2x+C3cos(2x)+C4sin(2x) and yp must be of this form. Indeed, there must be a
particular solution of the simpler form yp=C1+C2x (because C3cos(2x)+C4sin(2x) can be added to any yp).
It remains to find appropriate values C1;C2 such that yp

00+4yp=12x. Since yp00+4yp=4C1+4C2x, comparing
coefficients yields 4C1=0 and 4C2= 12, so that C1=0 and C2=3. In other words, yp=3x.
Therefore, the general solution to the original DE is y(x)= 3x+C1cos(2x)+C2sin(2x).

Example 28. Determine the general solution of y 00+4y 0+4y= e3x.
Solution. The DE is p(D)y= e3x with p(D) =D2+4D+4= (D+2)2, which has roots ¡2;¡2. Thus, the
general solution is y(x)= yp(x)+ (C1+C2x)e

¡2x. It remains to find a particular solution yp.

Since (D¡ 3)e3x=0, we apply (D¡ 3) to the DE to get the homogeneous DE (D¡ 3)(D+2)2y=0.

Its general solution is (C1+C2x)e
¡2x+C3e

3x and yp must be of this form. Indeed, there must be a particular
solution of the simpler form yp=Ae3x.

To determine the value of C, we plug into the original DE: yp
00+4yp

0 +4yp=(9+4 � 3+4)Ae3x=
!
e3x. Hence,

A=1/25. Therefore, the general solution to the original DE is y(x)= (C1+C2x)e
¡2x+

1

25
e3x.

Solution. (same, just shortened) In schematic form:

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 3

solutions e¡2x; xe¡2x e3x

This tells us that there exists a particular solution of the form yp=Ae3x. Then the general solution is

y= yp+C1e
¡2x+C2xe

¡2x:

So far, we didn't need to do any calculations (besides determining the roots)! However, we still need to determine
the value of A (by plugging into the DE as above), namely A= 1

25 . For this reason, this approach is often called
the method of undetermined coefficients.
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We found the following recipe for solving nonhomogeneous linear DEs with constant coefficients:

That approach works for p(D)y= f(x) whenever the right-hand side f(x) is the solution of some homogeneous
linear DE with constant coefficients: q(D)f(x)= 0

(method of undetermined coefficients) To find a particular solution yp to an inhomogeneous
linear DE with constant coefficients p(D)y= f(x):

� Determine the characteristic roots of the homogeneous DE and corresponding solutions.

� Find the roots of q(D) so that q(D)f(x)= 0. [This does not work for all f(x).]

Let yp;1; yp;2; ::: be the additional solutions (when the roots are added to those of the
homogeneous DE).

Then there exist (unique) Ci so that

yp=C1yp;1+C2yp;2+ :::

To find the values Ci, we need to plug yp into the original DE.

Why? To see that this approach works, note that applying q(D) to both sides of the inhomogeneous DE
p(D)y = f(x) results in q(D)p(D)y = 0 which is homogeneous. We already know that the solutions to the
homogeneous DE can be added to any particular solution yp. Therefore, we can focus only on the additional
solutions coming from the roots of q(D).

For which f(x) does this work? By Theorem 20, we know exactly which f(x) are solutions to homoge-
neous linear DEs with constant coefficients: these are linear combinations of exponentials xjerx (which includes
xj eaxcos(bx) and xj eaxsin(bx)).

Example 29. Determine the general solution of y 00+4y 0+4y=7e¡2x.
Solution. The homogeneous DE is y 00 + 4y 0 + 4y = 0 (note that D2 + 4D + 4 = (D + 2)2) and the
inhomogeneous part is 7e¡2x.

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 ¡2

solutions e¡2x; xe¡2x x2e¡2x

This tells us that there exists a particular solution of the form yp=Cx2 e¡2x. To find the value of C, we plug
into the DE.
yp
0 =C(¡2x2+2x)e¡2x

yp
00=C(4x2¡ 8x+2)e¡2x

yp
00+4yp

0 +4yp=2Ce¡2x=
!
7e¡2x

It follows that C =
7

2
, so that yp=

7

2
x2e¡2x. Hence the general solution is

y(x)=

�
C1+C2x+

7
2
x2
�
e¡2x:

Example 30. Consider the DE y 00+4y 0+4y=2e3x¡ 5e¡2x.

(a) What is the simplest form (with undetermined coefficients) of a particular solution?

(b) Determine a particular solution using our results from Examples 28 and 29.

(c) Determine the general solution.
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Solution.

(a) Note that D2+4D+4= (D+2)2.

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 3;¡2

solutions e¡2x; xe¡2x e3x; x2e¡2x

Hence, there has to be a particular solution of the form yp=Ae3x+Bx2e¡2x.
To find the (unique) values of A and B, we can plug into the DE. Alternatively, we can break the problem
into two pieces as illustrated in the next part.

(b) Write the DE as Ly=2e3x¡ 5e¡2x where L=D2+4D+4. In Example 28 we found that y1=
1

25
e3x

satisfies Ly1= e3x. Also, in Example 29 we found that y2=
7

2
x2e¡2x satisfies Ly2=7e¡2x.

By linearity, it follows that L(Ay1+By2)=ALy1+BLy2=Ae3x+7Be¡2x.
To get a particular solution yp of our DE, we need A=2 and 7B=¡5.

Hence, yp=2y1¡ 5

7
y2=

2

25
e3x¡ 5

2
x2e¡2x.

Comment. Of course, if we hadn't previously solved Examples 28 and 29, we could have plugged the result
from the first part into the DE to determine the coefficients A and B. On the other hand, breaking the
inhomogeneous part (2e3x¡ 5e¡2x) up into pieces (here, e3x and e¡2x) can help keep things organized,
especially when working by hand.

(c) The general solution is 2

25
e3x¡ 5

2
x2e¡2x+(C1+C2x)e

2x.

Example 31. Consider the DE y 00¡ 2y 0+ y=5sin(3x).

(a) What is the simplest form (with undetermined coefficients) of a particular solution?

(b) Determine a particular solution.

(c) Determine the general solution.

Solution. Note that D2¡ 2D+1= (D¡ 1)2.
homogeneous DE inhomogeneous part

characteristic roots 1; 1 �3i
solutions ex; xex cos(3x); sin(3x)

(a) This tells us that there exists a particular solution of the form yp=A cos(3x)+B sin(3x).

(b) To find the values of A and B, we plug into the DE.

yp
0 =¡3A sin(3x)+ 3B cos(3x)

yp
00=¡9A cos(3x)¡ 9B sin(3x)

yp
00¡ 2yp0 + yp=(¡8A¡ 6B)cos(3x)+ (6A¡ 8B)sin(3x)=

!
5sin(3x)

Equating the coefficients of cos(x), sin(x), we obtain the two equations¡8A¡6B=0 and 6A¡8B=5.

Solving these, we find A= 3

10
, B=¡2

5
. Accordingly, a particular solution is yp=

3

10
cos(3x)¡ 2

5
sin(3x).

(c) The general solution is y(x)= 3

10
cos(3x)¡ 2

5
sin(3x)+ (C1+C2x)e

x.

Example 32. Consider the DE y 00¡ 2y 0+ y = 5e2xsin(3x) + 7xex. What is the simplest form
(with undetermined coefficients) of a particular solution?

Solution. SinceD2¡2D+1=(D¡1)2, the characteristic roots are 1;1. The roots for the inhomogeneous part
are 2� 3i; 1; 1. Hence, there has to be a particular solution of the form yp=Ae2xcos(3x) +Be2xsin(3x) +
Cx2ex+Dx3ex.
(We can then plug into the DE to determine the (unique) values of the coefficients A;B;C;D.)

Armin Straub
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Example 33. (homework)What is the shape of a particular solution of y 00+4y 0+4y=xcos(x)?
Solution. The characteristic roots are ¡2;¡2. The roots for the inhomogeneous part are �i;�i. Hence, there
has to be a particular solution of the form yp=(C1+C2x)cos(x)+ (C3+C4x)sin(x).

Continuing to find a particular solution. To find the value of the Cj's, we plug into the DE.
yp
0 =(C2+C3+C4x)cos(x)+ (C4¡C1¡C2x)sin(x)
yp
00=(2C4¡C1¡C2x)cos(x)+ (¡2C2¡C3¡C4x)sin(x)
yp
00+4yp

0 +4yp=(3C1+4C2+4C3+2C4+(3C2+4C4)x)cos(x)

+ (¡4C1¡ 2C2+3C3+4C4+(¡4C2+3C4)x)sin(x)=
!
x cos(x).

Equating the coefficients of cos(x), xcos(x), sin(x), xsin(x), we get the equations 3C1+4C2+4C3+2C4=0,
3C2+4C4=1, ¡4C1¡ 2C2+3C3+4C4=0, ¡4C2+3C4=0.

Solving (this is tedious!), we find C1=¡ 4

125
, C2=

3

25
, C3=¡ 22

125
, C4=

4

25
.

Hence, yp=
�
¡ 4

125
+

3

25
x
�
cos(x)+

�
¡ 22

125
+

4

25
x
�
sin(x).
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Notes for Lecture 5 Wed, 1/29/2025

Example 34. (review)What is the shape of a particular solution of y 00+4y 0+4y=4e3xsin(2x)¡
x sin(x).
Solution. The characteristic roots are ¡2;¡2. The roots for the inhomogeneous part roots are 3� 2i;�i;�i.
Hence, there has to be a particular solution of the form
yp=C1e

3xcos(2x)+C2e
3xsin(2x)+ (C3+C4x)cos(x)+ (C5+C6x)sin(x).

Continuing to find a particular solution. To find the values of C1; :::; C6, we plug into the DE. But this final
step is so boring that we don't go through it here. Computers (currently?) cannot afford to be as selective; mine
obediently calculated: yp=¡ 4

841
e3x(20cos(2x)¡ 21sin(2x))+ 1

125
((¡22+ 20x)cos(x)+ (4¡ 15x)sin(x))

Sage

In practice, we are happy to let a machine do tedious computations. Let us see how to use the
open-source computer algebra system Sage to do basic computations for us.
Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use it
in the cloud at cocalc.com from any browser.
[For basic computations, you can also simply use the textbox on our course website.]
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 35. To solve the differential equation y 00+4y 0+4y=7e¡2x, as we did in Example 29,
we can use the following:

>>> x = var('x')

>>> y = function('y')(x)

>>> desolve(diff(y,x,2) + 4*diff(y,x) + 4*y == 7*exp(-2*x), y)

7
2
x2 e(¡2 x)+(K2x+K1) e

(¡2 x)

This confirms, as we had found, that the general solution is y(x)=
�
C1+C2x+

7

2
x2
�
e¡2x.

Example 36. Similarly, Sage can solve initial value problems such as y 00¡ y 0¡2y=0 with initial
conditions y(0)= 4, y 0(0)= 5.
>>> x = var('x')

>>> y = function('y')(x)

>>> desolve(diff(y,x,2) - diff(y,x) - 2*y == 0, y, ics=[0,4,5])

3 e(2 x)+ e(¡x)

This matches the (unique) solution y(x)= 3e2x+ e¡x that we derived in Example 18.
Higher order. Unfortunately, the command desolve currently only works like this for differential equations
of first and second order. To likewise solve a third-order differential equation, we can use the function des-
olve_laplace instead. For instance, to solve the IVP y 000=3y 00¡4y with y(0)=1, y 0(0)=¡2, y00(0)=3, use

>>> desolve_laplace(diff(y,x,3) == 3*diff(y,x,2) - 4*y, y, ics=[0,1,-2,3])

x e(2 x)¡ 2
3
e(2 x)+

5
3
e(¡x)

to find that the unique solution is y(x)= 1

3
(3x¡ 2)e2x+ 5

3
e¡x.

Armin Straub
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More on differential operators

Example 37. We have been factoring differential operators like D2+4D+4= (D+2)2.
Things become much more complicated when the coefficients are not constant!
For instance, the linear DE y 00+4y 0+4xy=0 can be written as Ly=0 with L=D2+4D+4x. However, in
general, such operators cannot be factored (unless we allow as coefficients functions in x that we are not familiar
with). [On the other hand, any ordinary polynomial can be factored over the complex numbers.]
One indication that things become much more complicated is that x and D do not commute: xD=/ Dx!!

Indeed, (xD)f(x)=xf 0(x) while (Dx)f(x)= d

dx
[xf(x)]= f(x)+ xf 0(x)= (1+ xD)f(x).

This computation shows that, in fact, Dx= xD+1.

Review. Linear DEs are those that can be written as Ly= f(x) where L is a linear differential
operator: namely,

L= pn(x)Dn+ pn¡1(x)Dn¡1+ :::+ p1(x)D+ p0(x): (1)

Recall that the operators xD and Dx are not the same: instead, Dx=xD+1.
We say that an operator of the form (1) is in normal form.

For instance. xD is in normal form, whereas Dx is not in normal form. It follows from the previous example
that the normal form of Dx is xD+1.

Example 38. Let a= a(x) be some function.

(a) Write the operator Da in normal form [normal form means as in (1)].

(b) Write the operator D2a in normal form.

Solution.

(a) (Da)f(x)= d

dx
[a(x) f(x)] = a0(x)f(x)+ a(x)f 0(x)= (a0+ aD)f(x)

Hence, Da= aD+ a0.

(b) (D2a)f(x)=
d2

dx2
[a(x) f(x)] =

d

dx
[a0(x)f(x)+ a(x)f 0(x)]= a00(x)f(x)+ 2a0(x)f 0(x)+ a(x)f 00(x)

= (a00+2a0D+ aD2)f(x)

Hence, D2a= aD2+2a0D+ a00.
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Notes for Lecture 6 Fri, 1/31/2025

Example 39. (review) Let a= a(x) be some function.

(a) Write the operator Da in normal form [normal form means as in (1)].

(b) Write the operator D2a in normal form.

Solution.

(a) (Da)f(x)= d

dx
[a(x) f(x)] = a0(x)f(x)+ a(x)f 0(x)= (a0+ aD)f(x)

Hence, Da= aD+ a0.

(b) (D2a)f(x)=
d2

dx2
[a(x) f(x)] =

d

dx
[a0(x)f(x)+ a(x)f 0(x)]= a00(x)f(x)+ 2a0(x)f 0(x)+ a(x)f 00(x)

= (a00+2a0D+ aD2)f(x)

Hence, D2a= aD2+2a0D+ a00.
Alternatively. We can also useDa=aD+a0 from the previous part and work with the operators directly:
D2a=D(Da)=D(aD+ a0)=DaD+Da0=(aD+ a0)D+ a0D+ a00= aD2+2a0D+ a00.

Example 40. Suppose that a and b depend on x. Expand (D+ a)(D+ b) in normal form.

Solution. (D+ a)(D+ b)=D2+Db+ aD+ ab=D2+(bD+ b0)+ aD+ ab=D2+(a+ b)D+ ab+ b0

Comment. Of course, if b is a constant, then b0=0 and we just get the familiar expansion.
Comment. At this point, it is not surprising that, in general, (D+ a)(D+ b)=/ (D+ b)(D+ a).

Example 41. Suppose we want to factor D2+ pD+ q as (D+a)(D+ b). [p; q; a; b depend on x]

(a) Spell out equations to find a and b.

(b) Find all factorizations of D2. [An obvious one is D2=D �D but there are others!]

Solution.

(a) Matching coefficients with (D+a)(D+ b)=D2+(a+ b)D+ab+ b0 (we expanded this in the previous
example), we find that we need

p= a+ b; q= ab+ b0:

Equivalently, a= p¡ b and q= (p¡ b)b+ b0. The latter is a nonlinear (!) DE for b. Once solved for b,
we obtain a as a= p¡ b.

(b) This is the case p= q=0. The DE for b becomes b0= b2.
Because it is separable (show all details!), we find that b(x)= 1

C ¡ x
or b(x)= 0.

Since a=¡b, we obtain the factorizations D2=
�
D¡ 1

C ¡x

��
D+

1

C ¡x

�
and D2=D �D.

Our computations show that there are no further factorizations.

Comment. Note that this example illustrates that factorization of differential operators is not unique!

For instance, D2=D �D and D2=
�
D+

1

x

�
�
�
D¡ 1

x

�
(the case C=0 above).

Comment. In general, the nonlinear DE for b does not have any polynomial or rational solution (or, in fact, any
solution that can be expressed in terms of functions that we are familiar with).
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Solving linear recurrences with constant coefficients

Motivation: Fibonacci numbers

The numbers 0; 1; 1; 2; 3; 5; 8; 13; 21; 34; ::: are called Fibonacci numbers.
They are defined by the recursion Fn+1=Fn+Fn¡1 and F0=0, F1=1.
How fast are they growing?
Have a look at ratios of Fibonacci numbers: 2

1
= 2, 3

2
= 1.5, 5

3
� 1.667, 8

5
= 1.6, 13

8
= 1.625, 21

13
= 1.615,

34
21
= 1.619, :::

These ratios approach the golden ratio '= 1+ 5
p

2
= 1.618:::

In other words, it appears that lim
n!1

Fn+1
Fn

= 1+ 5
p

2
.

We will soon understand where this is coming from.

We can derive all of that using the same ideas as in the case of linear differential equations. The
crucial observation that we can write the recursion in operator form:

Fn+1=Fn+Fn¡1 is equivalent to (N2¡N ¡ 1)Fn=0.
Here, N is the shift operator: Nan= an+1.

Comment. Recurrence equations are discrete analogs of differential equations.

For instance, recall that f 0(x)= lim
h!0

1
h
[f(x+h)¡ f(x)].

Setting h=1, we get the rough estimate f 0(x)� f(x+1)¡ f(x) so thatD is (roughly) approximated by N ¡1.

Example 42. Find the general solution to the recursion an+1=7an.
Solution. Note that an=7an¡1=7 � 7an¡2= ���=7na0.
Hence, the general solution is an=C � 7n.
Comment. This is analogous to y 0=7y having the general solution y(x)=Ce7x.

Solving recurrence equations

Example 43. (�warmup�) Let the sequence an be defined by the recursion an+2= an+1+6an
and the initial values a0=1, a1=8. Determine the first few terms of the sequence.

Solution. a2= a1+6a0= 14, a3= a2+6a1= 62, a4= 146, :::

Comment. In the next example, we get ready to solve this recursion and to find an explicit formula for the
sequence an.

Example 44. (�warmup�) Find the general solution to the recursion an+2= an+1+6an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6= (N ¡ 3)(N +2).
Since (N ¡ 3)an=0 has solution an=C � 3n, and since (N +2)an=0 has solution an=C � (¡2)n (compare
previous example), we conclude that the general solution is an=C1 � 3n+C2 � (¡2)n.
Comment. This must indeed be the general solution, because the two degrees of freedom C1; C2 allow us to
match any initial conditions a0=A, a1=B: the two equations C1+C2=A and 3C1¡2C2=B in matrix form

are
�
1 1
3 ¡2

��
C1

C2

�
=
�
A
B

�
, which always has a (unique) solution because det

��
1 1
3 ¡2

��
=¡5=/ 0.
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Notes for Lecture 7 Mon, 2/3/2025

Review. The recurrence an+1=5an has general solution an=C � 5n.
In operator form, the recurrence is (N ¡ 5)an= 0, where p(N) =N ¡ 5 is the characteristic polynomial. The
characteristic root 5 corresponds to the solution 5n.
This is analogous to the case of DEs p(D)y=0 where a root r of p(D) corresponds to the solution erx.

Example 45. (cont'd) Let the sequence an be defined by an+2=an+1+6an and a0=1, a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= a1+6a0= 14, a3= a2+6a1= 62, a4= 146, :::

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 6 has roots 3;¡2.
Hence, an= C1 3

n+ C2 (¡2)n and we only need to figure out the two unknowns C1, C2. We can do
that using the two initial conditions: a0=C1+C2=1, a1=3C1¡ 2C2=8.
Solving, we find C1=2 and C2=¡1 so that, in conclusion, an=2 � 3n¡ (¡2)n.
Comment. Such a formula is sometimes called a Binet-like formula (because it is of the same kind as
the Binet formula for the Fibonacci numbers that we can derive in the same manner).

(c) It follows from our formula that lim
n!1

an+1
an

=3 (because j3j> j¡2j so that 3n dominates (¡2)n).

To see this, we need to realize that, for large n, 3n is much larger than (¡2)n so that we have an�2 �3n

when n is large. Hence, an+1
an

� 2 � 3n+1
2 � 3n =3.

Alternatively, to be very precise, we can observe that (by dividing each term by 3n)

an+1
an

=
2 � 3n+1¡ (¡2)n+1
2 � 3n¡ (¡2)n =

2 � 3+2
�
¡2

3

�n
2 � 1¡

�
¡2

3

�n ¡!as n!1 2 � 3+0
2 � 1¡ 0 =3:

Example 46. Consider the sequence an defined by an+2= an+1+2an and a0=1, a1=8.

(a) Determine the first few terms of the sequence.

(b) Find a formula for an.

(c) Determine lim
n!1

an+1
an

.

Solution.

(a) a2= 10, a3= 26

(b) The recursion can be written as p(N)an=0 where p(N)=N2¡N ¡ 2 has roots 2;¡1.
Hence, an= C1 2

n+ C2 (¡1)n and we only need to figure out the two unknowns C1, C2. We can do
that using the two initial conditions: a0=C1+C2=1, a1=2C1¡C2=8.
Solving, we find C1=3 and C2=¡2 so that, in conclusion, an=3 � 2n¡ 2(¡1)n.

(c) It follows from the formula an=3 � 2n¡ 2(¡1)n that lim
n!1

an+1
an

=2.

Comment. In fact, this already follows from an = C1 2
n + C2 (¡1)n provided that C1 =/ 0. Since

an=C2 (¡1)n (the case C1=0) is not compatible with a0=1, a1=8, we can conclude lim
n!1

an+1
an

=2

without computing the actual values of C1 and C2.
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Example 47. (�warmup�) Find the general solution to the recursion an+2=4an+1¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡ 4N +4 has roots 2; 2.
So a solution is 2n and, from our discussion of DEs, it is probably not surprising that a second solution is n �2n.
Hence, the general solution is an=C1 � 2n+C2 �n � 2n=(C1+C2n) � 2n.
Comment. This is analogous to (D¡ 2)2y 0=0 having the general solution y(x)= (C1+C2x)e

2x.
Check! Let's check that an=n � 2n indeed satisfies the recursion (N ¡ 2)2an=0.

(N ¡ 2)n � 2n=(n+1)2n+1¡ 2n � 2n=2n+1, so that (N ¡ 2)2n � 2n=(N ¡ 2)2n+1=0.

Combined, we obtain the following analog of Theorem 20 for recurrence equations (RE):

Comment. Sequences that are solutions to such recurrences are called constant recursive or C-finite.

Theorem 48. Consider the homogeneous linear RE with constant coefficients p(N)an=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the RE are given by njrn for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.

Moreover. If r is the sole largest root by absolute value among the roots contributing to an, then an�Crn
(if r is not repeated�what if it is?) for large n. In particular, it follows that

lim
n!1

an+1
an

= r:

Advanced comment. Things can get weird if there are several roots of the same absolute value. Consider, for
instance, the case an=2n+(¡2)n. Can you see that, in this case, the limit limn!1

an+1
an

doesn't even exist?

Example 49. Find the general solution to the recursion an+3=2an+2+ an+1¡ 2an.
Solution. The recursion can be written as p(N)an= 0 where p(N) =N3¡ 2N2¡N + 2 has roots 2; 1;¡1.
(Here, we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=C1 � 2n+C2+C3 � (¡1)n.

Example 50. Find the general solution to the recursion an+3=3an+2¡ 4an.
Solution. The recursion can be written as p(N)an=0 where p(N)=N3¡3N2+4 has roots 2;2;¡1. (Again,
we may use some help from a computer algebra system to find the roots.)
Hence, the general solution is an=(C1+C2n) � 2n+C3 � (¡1)n.
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Theorem 51. (Binet's formula) Fn=
1

5
p
h�

1+ 5
p

2

�n
¡
�
1¡ 5

p

2

�ni
Proof. The recursion Fn+1=Fn+Fn¡1 can be written as p(N)an=0 where p(N)=N2¡N ¡ 1 has roots

�1=
1+ 5

p

2
� 1.618; �2=

1¡ 5
p

2
�¡0.618:

Hence, Fn=C1 ��1n+C2 ��2n and we only need to figure out the two unknowns C1, C2. We can do that using

the two initial conditions: F0=C1+C2=
!
0, F1=C1 �

1+ 5
p

2
+C2 �

1¡ 5
p

2
=
!
1.

Solving, we find C1=
1

5
p and C2=¡ 1

5
p so that, in conclusion, Fn=

1

5
p (�1

n¡�2n), as claimed. �

Comment. For large n, Fn�
1

5
p �1

n (because �2
n becomes very small). In fact, Fn= round

�
1

5
p
�
1+ 5

p

2

�n�
.

Back to the quotient of Fibonacci numbers. In particular, because �1
n dominates �2

n, it is now transparent
that the ratios Fn+1

Fn
approach �1=

1+ 5
p

2
� 1.618. To be precise, note that

Fn+1
Fn

=

1

5
p (�1

n+1¡�2
n+1)

1

5
p (�1

n¡�2n)
=
�1
n+1¡�2

n+1

�1
n¡�2n

=
�1¡�2

�
�2
�1

�n
1¡

�
�2
�1

�n ¡!n!1 �1¡ 0
1¡ 0 =�1:

In fact, it follows from �2 < 0 that the ratios Fn+1
Fn

approach �1 in the alternating fashion that we observed
numerically earlier. Can you see that?

Example 52. Consider the sequence an defined by an+2 = 4an+1 + 9an and a0 = 1, a1 = 2.
Determine lim

n!1

an+1
an

.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2¡4N ¡9 has roots 4� 52
p

2
�5.6056;

¡1.6056. Both roots have to be involved in the solution in order to get integer values.
We conclude that lim

n!1

an+1
an

=2+ 13
p

� 5.6056 (because j5.6056j> j¡1.6056j).

Example 53. (extra) Consider the sequence an defined by an+2 = 2an+1 + 4an and a0 = 0,
a1=1. Determine lim

n!1

an+1
an

.

First few terms of sequence. 0; 1; 2; 8; 24; 80; 256; 832; :::
These are actually related to Fibonacci numbers. Indeed, an= 2n¡1Fn. Can you prove this directly from the
recursions? Alternatively, this follows from comparing the Binet-like formulas.

Solution. Proceeding as in the previous example, we find lim
n!1

an+1
an

=1+ 5
p
� 3.23607.

Comment. With just a little more work, we find the Binet-like formula an=
(1+ 5

p
)n¡ (1¡ 5

p
)n

2 5
p .
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Notes for Lecture 8 Wed, 2/5/2025

Crash course: Eigenvalues and eigenvectors

If Ax=�x (and x=/ 0), then x is an eigenvector of A with eigenvalue � (just a number).

Note that, for the equation Ax=�x to make sense, A needs to be a square matrix (i.e. n�n).

Key observation:

Ax=�x
() Ax¡�x=0
() (A¡�I)x=0
This homogeneous system has a nontrivial solution x if and only if det(A¡�I)= 0.

To find eigenvectors and eigenvalues of A:

(a) First, find the eigenvalues � by solving det(A¡�I)= 0.
det(A¡�I) is a polynomial in �, called the characteristic polynomial of A.

(b) Then, for each eigenvalue �, find corresponding eigenvectors by solving (A¡�I)x=0.

Example 54. Determine the eigenvalues and eigenvectors of A=
�
8 ¡10
5 ¡7

�
.

Solution. The characteristic polynomial is:

det(A¡�I)=det
��

8¡� ¡10
5 ¡7¡�

��
=(8¡�)(¡7¡�)+ 50=�2¡�¡ 6= (�¡ 3)(�+2)

Hence, the eigenvalues are �=3 and �=¡2.

� To find an eigenvector for �=3, we need to solve
�
5 ¡10
5 ¡10

�
x=0.

Hence, x=
�
2
1

�
is an eigenvector for �=3.

� To find an eigenvector for �=¡2, we need to solve
�
10 ¡10
5 ¡5

�
x=0.

Hence, x=
�
1
1

�
is an eigenvector for �=¡2.

Check!
�
8 ¡10
5 ¡7

��
2
1

�
=
�
6
3

�
=3 �

�
2
1

�
and

�
8 ¡10
5 ¡7

��
1
1

�
=
�
¡2
¡2

�
=¡2 �

�
1
1

�
On the other hand, a random other vector like

�
1
2

�
is not an eigenvector:

�
8 ¡10
5 ¡7

��
1
2

�
=
�
¡12
¡9

�
=/ �

�
1
2

�
.

Example 55. (homework) Determine the eigenvalues and eigenvectors of A=
�
1 ¡6
1 ¡4

�
.

Solution. (final answer only) x=
�
2
1

�
is an eigenvector for �=¡2, and x=

�
3
1

�
is an eigenvector for �=¡1.
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Preview: A system of recurrence equations equivalent to the Fibonacci recurrence

Example 56. We model rabbit reproduction as follows.

Each month, every pair of adult rabbits pro-
duces one pair of baby rabbit as offspring.
Meanwhile, it takes baby rabbits one month
to mature to adults.

adult rabbit baby rabbit
1

1

1

Comment. In this simplified model, rabbits always come in male/female pairs and no rabbits die. Though these
features might make it sound fairly useless, the model may have some merit when describing populations under
ideal conditions (unlimited resources) and over short time (no deaths).
Historical comment. The question how many rabbits there are after one year, when starting out with a pair of
baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa, known
as Fibonacci.

If we start with one baby rabbit pair, how many adult rabbit pairs are there after n months?
Solution. Let an be the number of adult rabbit pairs after n months. Likewise, bn is the number of baby rabbit
pairs. The transition from one month to the next is given by an+1=an+ bn and bn+1=an. Using bn=an¡1
(from the second equation) in the first equation, we obtain an+1= an+ an¡1.
The initial conditions are a0=0 and a1=1 (the latter follows from b0=1).
It follows that the number bn of adult rabbit pairs are precisely the Fibonacci numbers Fn.
Comment. Note that the transition from one month to the next is described by in matrix-vector form as�

an+1
bn+1

�
=

�
an+ bn
an

�
=

�
1 1
1 0

��
an
bn

�
:

Writing an=
�
an
bn

�
, this becomes an+1=

�
1 1
1 0

�
an with a0=

�
0
1

�
.

Consequently, an=
�
1 1
1 0

�n
a0=

�
1 1
1 0

�n� 0
1

�
.

Looking ahead. Can you see how, starting with the Fibonacci recurrence Fn+2= Fn+1+ Fn,
we can arrive at this same system?

Solution. Set an=
�
Fn+1
Fn

�
. Then an+1=

�
Fn+2
Fn+1

�
=
�
Fn+1+Fn
Fn+1

�
=
�
1 1
1 0

��
Fn+1
Fn

�
=
�
1 1
1 0

�
an.
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Systems of recurrence equations

Example 57. (review) Consider the sequence an defined by an+2= 4an¡ 3an+1 and a0= 1,
a1=2. Determine lim

n!1

an+1
an

.

Solution. The recursion can be written as p(N)an=0 where p(N)=N2+3N ¡4 has roots 1;¡4. Hence, the
general solution is an=C1+C2 � (¡4)n. We can see that both roots have to be involved in the solution (in other
words, C1=/ 0 and C2=/ 0) because an=C1 and an=C2 � (¡4)n are not consistent with the initial conditions.

We conclude that lim
n!1

an+1
an

=¡4 (because j¡4j> j1j).

Example 58. Write the (second-order) RE an+2=4an¡3an+1, with a0=1, a1=2, as a system
of (first-order) recurrences.

Solution. Write bn= an+1.

Then, an+2=4an¡ 3an+1 translates into the first-order system
�
an+1= bn
bn+1=4an¡ 3bn

.

Let an=
�
an
bn

�
. Then, in matrix form, the RE is an+1=

�
0 1
4 ¡3

�
an, with a0=

�
1
2

�
.

Equivalently. Write an=
�

an
an+1

�
. Then we obtain the above system as

an+1=

�
an+1
an+2

�
=

�
an+1

4an¡ 3an+1

�
=

�
0 1
4 ¡3

��
an
an+1

�
=

�
0 1
4 ¡3

�
an; a0=

�
1
2

�
:

Comment. It follows that an =
�
0 1
4 ¡3

�n
a0 =

�
0 1
4 ¡3

�n� 1
2

�
. Solving (systems of) REs is equivalent to

computing powers of matrices!

Comment. We could also write an=
�
an+1
an

�
(with the order of the entries reversed). In that case, the system is

an+1=

�
an+2
an+1

�
=

�
4an¡ 3an+1

an+1

�
=

�
¡3 4
1 0

��
an+1
an

�
=

�
¡3 4
1 0

�
an; a0=

�
2
1

�
:

Comment. Recall that the characteristic polynomial of a matrixM is det(M ¡�I). Compute the characteristic
polynomial of both M =

�
0 1
4 ¡3

�
and M =

�
¡3 4
1 0

�
. In both cases, we get �2 + 3� ¡ 4, which matches the

polynomial p(N) (also called characteristic polynomial!) in the previous example. This will always happen and
explains why both are referred to as the characteristic polynomial.

Example 59. Write an+3¡ 4an+2+ an+1+6an=0 as a system of (first-order) recurrences.

Solution. Write an=

24 an
an+1
an+2

35. Then we obtain the system

an+1=

24 an+1
an+2
an+3

35=
24 an+1

an+2
4an+2¡ an+1¡ 6an

35=
24 0 1 0

0 0 1
¡6 ¡1 4

3524 an
an+1
an+2

35=
24 0 1 0

0 0 1
¡6 ¡1 4

35an:
In summary, the RE in matrix form is an+1=Man with M the matrix above.

Important comment. Given a first-order system an+1=Man, it is clear that the solution satisfies an=Mna0.
If you know how to compute matrix powers Mn, this means you can solve recurrences! On the other hand, we
will proceed the other way around. We solve the recurrence and then use that to determine Mn.
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Notes for Lecture 9 Fri, 2/7/2025

Solving systems of recurrence equations

The following summarizes how we can solve systems of recurrence equations using eigenvectors.
As a bonus, we obtain a way to compute matrix powers.
Each step is spelled out in Example 60 below.

(solving systems of REs) To solve an+1=Man, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: an=v�n [assuming that �=/ 0]

� If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) �n by placing each solution
vector into one column of �n.

� If desired, we can compute the matrix powersMn using any fundamental matrix �n as

Mn=�n�0
¡1:

Note that Mn is the unique matrix solution to an+1=Man with a0= I (the identity matrix).

Application: the unique solution to an+1=Man, a0= c is given by an=Mnc.

Why? If an=v�n for a �-eigenvector v, then an+1=v�n+1 and Man=Mv�n=�v ��n=v�n+1.
Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the
form crn where r=/ 0 is a root of the characteristic polynomials. To solve an+1=Man, it is therefore natural
to look for solutions of the form an=cr

n (where c=
�
c1
c2

�
). Note that an+1= crn+1= ran.

Plugging into an+1=Man we find crn+1=Mcrn.
Cancelling rn (just a nonzero number!), this simplifies to rc=Mc.
In other words, an=crn is a solution if and only if c is an r-eigenvector of M .

Not enough eigenvectors? In that case, we know what to do as well (at least in principle): instead of looking
only for solutions of the type an=v�n, we also need to look for solutions of the type an=(vn+w)�n. Note
that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Matrix solutions. Amatrix�n is amatrix solution toan+1=Man if�n+1=M�n. �n being a matrix solution
is equivalent to each column of �n being a normal (vector) solution. If the general solution of an+1 =Man
can be obtained as the linear combination of the columns of �n, then �n is a fundamental matrix solution.

Why can we compute matrix powers this way? Recall that, given a first-order system an+1 =Man, it is
clear that the solution satisfies an=Mna0. Likewise, a fundamental matrix solution �n to the same recurrence
satisfies �n=Mn�0. Multiplying both sides by �0

¡1 (on the right!) we conclude that �n�0
¡1=Mn.

Already know how to compute matrix powers? If you have taken linear algebra classes, you may have learned
that matrix powers Mn can be computed by diagonalizing the matrix M . The latter hinges on computing
eigenvalues and eigenvectors of M as well. Compare the two approaches!

Example 60. Let M =
�
8 ¡10
5 ¡7

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Solve an+1=Man, a0=
�
1
2

�
.
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Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: an=v�n

We computed in Example 54 that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=¡2.

Hence, the general solution is C1
�
2
1

�
3n+C2

�
1
1

�
(¡2)n.

(b) Note that we can write the general solution as

an=C1
�
2
1

�
3n+C2

�
1
1

�
(¡2)n=

�
2 � 3n (¡2)n
3n (¡2)n

��
C1

C2

�
.

We call �n=
�
2 � 3n (¡2)n
3n (¡2)n

�
the corresponding fundamental matrix (solution).

Note that our general solution is precisely �nc with c=
�
C1

C2

�
.

Observations.

(a) The columns of �n are (independent) solutions of the system.

(b) �n solves the RE itself: �n+1=M�n.
[Spell this out in this example! That �n solves the RE follows from the definition of matrix
multiplication.]

(c) It follows that �n=Mn�0. Equivalently, �n�0
¡1=Mn. (See next part!)

(c) Note that �0=
�
2 1
1 1

�
, so that �0

¡1=
�

1 ¡1
¡1 2

�
. It follows that

Mn=�n�0
¡1=

�
2 � 3n (¡2)n
3n (¡2)n

��
1 ¡1
¡1 2

�
=

�
2 � 3n¡ (¡2)n ¡2 � 3n+2(¡2)n
3n¡ (¡2)n ¡3n+2(¡2)n

�
:

Check. Let us verify the formula for Mn in the cases n=0 and n=1:

M0=
�
2¡ 1 ¡2+2
1¡ 1 ¡1+2

�
=
�
1 0
0 1

�
M1=

�
2 � 3¡ (¡2) ¡2 � 3+2(¡2)
3¡ (¡2) ¡3+ 2(¡2)

�
=
�
8 ¡10
5 ¡7

�

(d) an=Mna0=
�
2 � 3n¡ (¡2)n ¡2 � 3n+2(¡2)n
3n¡ (¡2)n ¡3n+2(¡2)n

��
1
2

�
=
�
¡2 � 3n+3(¡2)n
¡3n+3(¡2)n

�
Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[8,-10],[5,-7]])

>>> M^2�
14 ¡10
5 ¡1

�
Verify that this matrix matches what our formula for Mn produces for n=2. In order to reproduce the general
formula for Mn, we need to first define n as a symbolic variable:

>>> n = var('n')

>>> M^n�
2 � 3n¡ (¡2)n ¡2 � 3n+2 (¡2)n
3n¡ (¡2)n ¡3n+2 (¡2)n

�
Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and
eigenvectors of M from this formula for Mn? Of course, Sage can readily compute these for us directly using,
for instance, M.eigenvectors_right(). Try it! Can you interpret the output?
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Example 61. (review) Write the (second-order) RE an+2=an+1+2an, with a0=0, a1=1, as
a system of (first-order) recurrences.

Solution. If an=
�

an
an+1

�
, then an+1=

�
an+1
an+2

�
=
�

an+1
an+1+2an

�
=
�
0 1
2 1

�
an with a0=

�
0
1

�
.

Example 62. Let M =
�
0 1
2 1

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Solve an+1=Man, a0=
�
0
1

�
.

Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: namely, an=v�n.

The characteristic polynomial is: det(A¡�I)=det
��
¡� 1
2 1¡�

��
=�2¡�¡ 2= (�¡ 2)(�+1).

Hence, the eigenvalues are �=2 and �=¡1.

� �=2: Solving
�
¡2 1
2 ¡1

�
v=0, we find that v=

�
1
2

�
is an eigenvector for �=2.

� �=¡1: Solving
�
1 1
2 2

�
v=0, we find that v=

�
¡1
1

�
is an eigenvector for �=¡1.

Hence, the general solution is C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n.

(b) Note that C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

��
C1

C2

�
.

Hence, a fundamental matrix solution is �n=
�

2n ¡(¡1)n
2 � 2n (¡1)n

�
.

Comment. Other choices are possible and natural. For instance, the order of the two columns is based
on our choice of starting with �=2. Also, the columns can be scaled by any constant (for instance, using
¡v instead of v for �=¡1 above, we end up with the same�n but with the second column scaled by¡1).
In general, if �n is a fundamental matrix solution, then so is �nC where C is an invertible 2� 2 matrix.

(c) We computeMn=�n�0
¡1 using �n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
. Since �0

¡1=
�
1 ¡1
2 1

�¡1
=
1

3

�
1 1
¡2 1

�
, we have

Mn=�n�0
¡1=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
1
3

�
1 1
¡2 1

�
=
1
3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

�
:

(d) an=Mna0=
1

3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

��
0
1

�
=
1

3

�
2n¡ (¡1)n
2 � 2n+(¡1)n

�

Alternative solution of the first part. We saw in Example 61 that this system can be obtained from an+2=

an+1+2an if we set a=
�

an
an+1

�
. In Example 46, we found that this RE has solutions an=2n and an=(¡1)n.

Correspondingly, an+1=
�
0 1
2 1

�
an has solutions an=

"
2n

2n+1

#
and an=

"
(¡1)n
(¡1)n+1

#
.

These combine to the general solution C1
"

2n

2n+1

#
+C2

"
(¡1)n
(¡1)n+1

#
(equivalent to our solution above).

Alternative for last part. Solve the RE from Example 61 to find an=
1

3
(2n¡(¡1)n). The above is an=

�
an
an+1

�
.
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Notes for Lecture 10 Mon, 2/10/2025

We have learned how to compute Mn for a matrix M using its eigenvalues and eigenvectors, as
well as solve the system an+1=Man. For diagonal matrices, all this is much simpler:

Example 63. If M =

266664
3
¡2

5
1

377775, what is Mn?

Also: what is the solution to an+1=Man?

Comment. Entries that are not printed are meant to be zero (to make the structure of the 4� 4 matrix more
visibly transparent).

Solution. Mn=

266664
3n

(¡2)n
5n

1

377775
If this isn't clear to you, multiply out M2. What happens?

Also: an+1=Man with an=

266664
an
bn
cn
dn

377775 decouples into
an+1=3an
bn+1=¡2bn
cn+1=5cn
dn+1= dn

which is solved by an=

266664
an
bn
cn
dn

377775=
266664

3na0
(¡2)nb0
5nc0
d0

377775.

Example 64. (extra practice)

(a) Write the recurrence an+3¡ 4an+2+an+1+6an=0 as a system an+1=Man of (first-
order) recurrences.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

Solution.

(a) If an=

24 an
an+1
an+2

35, then the RE becomes an+1=Man with M =

24 0 1 0
0 0 1
¡6 ¡1 4

35.
(b) Because we started with a single (third-order) equation, we can avoid computing eigenvectors and eigen-

values (indeed, we will find these as a byproduct).

By factoring the characteristic equation N3¡ 4N2+N +6=(N ¡ 3)(N ¡ 2)(N +1), we find that the
characteristic roots are 3; 2;¡1 (these are also precisely the eigenvalues of M).
Hence, an=C1 � 3n+C2 � 2n+C3 � (¡1)n is the general solution to the initial RE.

Correspondingly, a fundamental matrix solution of the system is �n=

24 3n 2n (¡1)n
3 � 3n 2 � 2n ¡(¡1)n
9 � 3n 4 � 2n (¡1)n

35.
Note. This tells us that

24 1
3
9

35 is a 3-eigenvector,
24 1
2
4

35a 2-eigenvector, and
24 1
¡1
1

35a ¡1-eigenvector of M .

(c) Since �n+1=M�n, we have �n=Mn�0 so that Mn=�n�0
¡1. This allows us to compute that:

Mn=
1
12

24 ¡6 � 3n+ 12 � 2n+6(¡1)n ¡3 � 3n+8 � 2n¡ 5(¡1)n 3 � 3n¡ 4 � 2n+(¡1)n
¡18 � 3n+ 24 � 2n¡ 6(¡1)n ::: :::
¡54 � 3n+ 48 � 2n+6(¡1)n ::: :::

35
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Systems of differential equations

Review. Check out Examples 61 and 62 again. Below we will repeat the same steps, replacing
recurrences with differential equations as well as �n with e�x.

Example 65. Write the (second-order) initial value problem y 00= y 0+2y, y(0)=0, y 0(0)=1 as
a first-order system.

Solution. If y=
�
y
y 0

�
, then y0=

�
y 0

y 00

�
=
�

y 0

y 0+2y

�
=
�
0 1
2 1

��
y
y 0

�
=
�
0 1
2 1

�
y with y(0)=

�
0
1

�
.

This is exactly how we proceeded in Example 61.

Homework. Solve this IVP to find y(x)= 1

3
(e2x¡ e¡x). Then compare with the next example.

Example 66. (preview) Let M =
�
0 1
2 1

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Solve y 0=My, y(0)=
�
0
1

�
.

Solution. In Example 62, we only need to replace 2n by e2x (root 2) and (¡1)n by e¡x (root ¡1)!

(a) The general solution is C1
�
1
2

�
e2x+C2

�
¡1
1

�
e¡x.

(b) A fundamental matrix solution is �(x)=
"

e2x ¡e¡x
2 � e2x e¡x

#
.

(c) y(x)= 1

3

"
e2x¡ e¡x
2 � e2x+ e¡x

#

Preview. The special fundamental matrix Mn will be replaced by eMx, the matrix exponential.

Example 67. Write the (third-order) differential equation y 000 = 3y 00 ¡ 2y 0 + y as a system of
(first-order) differential equations.

Solution. If y=

2664 y
y 0

y 00

3775, then y0=24 y 0

y 00

y 000

35=
24 y 0

y 00

3y 00¡ 2y 0+ y

35=
24 0 1 0
0 0 1
1 ¡2 3

3524 y
y 0

y 00

35=
24 0 1 0
0 0 1
1 ¡2 3

35y.

For short, y0=

24 0 1 0
0 0 1
1 ¡2 3

35y
Comment. This is one reason why we care about systems of DEs, even if we work with just one function.

Example 68. Consider the following system of (second-order) initial value problems:

y1
00=2y10 ¡ 3y20 +7y2
y2
00=4y10 + y2

0 ¡ 5y1
y1(0)=2; y10(0)= 3; y2(0)=¡1; y20(0)= 1

Write it as a first-order initial value problem in the form y 0=My, y(0)= y0.
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Solution. If y=

26666664
y1
y2
y1
0

y2
0

37777775, then y0=
266664
y1
0

y2
0

y1
00

y2
00

377775=
266664

y1
0

y2
0

2y1
0¡ 3y20+7y2

4y1
0+ y2

0¡ 5y1

377775=
266664

0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775
266664
y1
y2
y1
0

y2
0

377775=
266664

0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775y.

For short, the system translates into y0=

266664
0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775y with y(0)=

266664
2
¡1
3
1

377775.

Solving systems of differential equations

We can solve the system y 0=My exactly as we solved an+1=Man.

The only difference is that we replace each �n (for characteristic root / eigenvalue �) with e�x. In fact, as shown
in the examples below, we can translate back and forth at any stage.

(solving systems of DEs) To solve y 0=My, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: y(x)=ve�x

� If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) �(x) by placing each solution
vector into one column of �(x).

� If desired, we can find the matrix exponential eMx using any fundamental matrix �(x):

eMx=�(x)�(0)¡1:

Note that eMx is the unique matrix solution to y0=My, y(0)= I (the identity matrix).

Application: the unique solution to y 0=My, y(0)= c is given by y(x)= eMxc.

Note. Unlike with Mn, it might not be clear what the matrix exponential eMx really is. One way to think
about it is that we are defining eMx as the solution to the IVP y0=My, y(0) = I. This is equivalent to how
one can define the ordinary exponential ex as the solution to y0= y, y(0)= 1.
[In a little bit, we will also discuss how to think about the matrix exponential eMx using power series.]

Comment. If there are not enough eigenvectors, then we knowwhat to do (at least in principle): instead of looking
only for solutions of the type y(x)=ve�x, we also need to look for solutions of the type y(x)= (vx+w)e�x.
Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Why does this work? Compare this to our method of solving systems of REs and for computing matrix powers
Mn. The above conclusion about systems of DEs can be deduced along the same lines as what we did for REs:

� For instance, for the first part, let us look for solutions of y0=My of the form y(x)=ve�x.
Note that y0=�ve�x=�y. Plugging into y0=My, we find �y=My.

In other words, y(x)=ve�x is a solution if and only if v is a �-eigenvector of M .

� If �(x) is a fundamental matrix solution, then so is 	(x)=�(x)C for every constant matrix C. (Why?!)
Therefore, 	(x)=�(x)�(0)¡1 is a fundamental matrix solution with 	(0)=�(0)�(0)¡1= I.

But eMx is defined to be the unique such solution, so that 	(x)= eMx.
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Example 69. (homework) Let M =
�
¡1 6
¡1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
1

�
.

(e) Compute Mn.

(f) Solve an+1=Man with a0=
�
1
1

�
.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��
¡1¡� 6
¡1 4¡�

��
=(¡1¡�)(4¡�)+ 6=�2¡ 3�+2= (�¡ 1)(�¡ 2)

Hence, the eigenvalues are �=1 and �=2.

� �=1: Solving
�
¡2 6
¡1 3

�
v=0, we find that v=

�
3
1

�
is an eigenvector for �=1.

� �=2: Solving
�
¡3 6
¡1 2

�
v=0, we find that v=

�
2
1

�
is an eigenvector for �=2.

Hence, the general solution is C1
�
3
1

�
ex+C2

�
2
1

�
e2x.

(b) The corresponding fundamental matrix solution is �=
"
3ex 2e2x

ex e2x

#
.

(c) Note that �(0)=
�
3 2
1 1

�
, so that �(0)¡1=

�
1 ¡2
¡1 3

�
. It follows that

eMx=�(x)�(0)¡1=

"
3ex 2e2x

ex e2x

#�
1 ¡2
¡1 3

�
=

"
3ex¡ 2e2x ¡6ex+6e2x

ex¡ e2x ¡2ex+3e2x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
1

�
=

"
3ex¡ 2e2x ¡6ex+6e2x

ex¡ e2x ¡2ex+3e2x

#�
1
1

�
=

"
¡3ex+4e2x

¡ex+2e2x

#
.

Note. If we hadn't already computed eMx, we would use the general solution and solve for the appropriate
values of C1 and C2. Do it that way as well!

(e) From the first part, it follows that an+1=Man has general solution C1
�
3
1

�
+C2

�
2
1

�
2n.

(Note that 1n=1.)

The corresponding fundamental matrix solution is �n=
�
3 2 � 2n
1 2n

�
.

As above, �0=
�
3 2
1 1

�
, so that �(0)¡1=

�
1 ¡2
¡1 3

�
and

Mn=�n�0
¡1=

�
3 2 � 2n
1 2n

��
1 ¡2
¡1 3

�
=

�
3¡ 2 � 2n ¡6+6 � 2n
1¡ 2n ¡2+3 � 2n

�
:

Important. Compare with our computation for eMx. Can you see how this was basically the same
computation? Write down Mn directly from eMx.

(f) The (unique) solution is an=Mn
�
1
1

�
=
�
3¡ 2 � 2n ¡6+6 � 2n
1¡ 2n ¡2+3 � 2n

��
1
1

�
=
�
¡3+4 � 2n
¡1+2 � 2n

�
.

Important. Again, compare with the earlier IVP! Without work, we can write down one from the other.
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We purposefully omit details of some computations in the next example to highlight how it
proceeds along the same lines as Example 60.
Important. In fact, we can translate back and forth (without additional computations) by simply replacing 3n

and (¡2)n by e3x and e¡2x.

Example 70. (extra practice) Let M =
�
8 ¡10
5 ¡7

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
0
1

�
.

Solution. (See Example 60 for more details on the analogous computations.)

(a) Recall that each �-eigenvector v of M provides us with a solution: namely, y(x)=ve�x.

We computed earlier that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=¡2.

Hence, the general solution is C1
�
2
1

�
e3x+C2

�
1
1

�
e¡2x.

(b) The corresponding fundamental matrix solution is �(x)=

"
2 � e3x e¡2x

e3x e¡2x

#
.

[Note that our general solution is precisely �(x)
�
C1

C2

�
.]

(c) Since �(0)=
�
2 1
1 1

�
, we have �(0)¡1=

�
1 ¡1
¡1 2

�
. It follows that

eMx=�(x)�(0)¡1=

"
2 � e3x e¡2x

e3x e¡2x

#�
1 ¡1
¡1 2

�
=

"
2 � e3x¡ e¡2x ¡2 � e3x+2e¡2x

e3x¡ e¡2x ¡e3x+2e¡2x

#
:

Check. Let us verify the formula for eMx in the simple case x=0: eM0=
�
2¡ 1 ¡2+2
1¡ 1 ¡1+2

�
=
�
1 0
0 1

�

(d) The solution to the IVP is y(x)= eMx
�
0
1

�
=

"
¡2 � e3x+2e¡2x

¡e3x+2e¡2x

#
(the second column of eMx).

Sage. We can compute the matrix exponential in Sage as follows:

>>> M = matrix([[8,-10],[5,-7]])

>>> exp(M*x) 
(2 e(5 x)¡ 1) e(¡2 x) ¡2 (e(5 x)¡ 1) e(¡2 x)

(e(5 x)¡ 1) e(¡2 x) ¡(e(5 x)¡ 2) e(¡2 x)

!
Note that this indeed matches the result of our computation.
[By the way, the variable x is pre-defined as a symbolic variable in Sage. That's why, unlike for n in the
computation of Mn, we did not need to use x = var('x') first.]
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Notes for Lecture 11 Wed, 2/12/2025

Example 71. Suppose that eMx= 1

10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
.

(a) Without doing any computations, determine Mn.

(b) What is M?

(c) Without doing any computations, determine the eigenvalues and eigenvectors of M .

(d) From those, write down a simple fundamental matrix solution to y 0=My.

(e) From that fundamental matrix solution, how can we compute eMx? (If we didn't know it already . . . )

(f) Having computed eMx, what is a simple check that we can (should!) make?

Solution.

(a) Since ex and e2x correspond to eigenvalues 1 and 2, we just need to replace these by 1n=1 and 2n:

Mn=
1
10

�
1+9 � 2n 3¡ 3 � 2n
3¡ 3 � 2n 9+2n

�

(b) We can simply set n=1 in our formula for Mn, to get M =
1

10

�
19 ¡3
¡3 11

�
.

(c) The eigenvalues are 1 and 2 (because eMx contains the exponentials ex and e2x).

Looking at the coefficients of ex in the first column of eMx, we see that
�
1
3

�
is a 1-eigenvector.

[We can also look the second column of eMx, to obtain
�
3
9

�
which is a multiple and thus equivalent.]

Likewise, by looking at the coefficients of e2x, we see that
�

9
¡3

�
or, equivalently,

�
¡3
1

�
is a 2-eigenvector.

Comment. To see where this is coming from, keep in mind that, associated to a �-eigenvector v, we
have the corresponding solution y(x) = ve�x of the DE y0=My. On the other hand, the columns of
eMx are solutions to that DE and, therefore, must be linear combinations of these ve�x.

(d) From the eigenvalues and eigenvectors, we know that
�
1
3

�
ex and

�
¡3
1

�
e2x are solutions (and that the

general solutions consists of the linear combinations of these two).

Selecting these as the columns, we obtain the fundamental matrix solution �(x)=
"
ex ¡3e2x
3ex e2x

#
.

Comment. The fundamental refers to the fact that the columns combine to the general solution.
The matrix solution means that �(x) itself satisfies the DE: namely, we have �0=M�. That this is the
case is a consequence of matrix multiplication (namely, say, the second column of M� is defined to be
M times the second column of �; but that column is a vector solution and therefore solves the DE).

(e) We can compute eMx as eMx=�(x)�(0)¡1.

If �(x)=
"
ex ¡3e2x
3ex e2x

#
, then �(0)=

�
1 ¡3
3 1

�
and, hence, �(0)¡1= 1

10

�
1 3
¡3 1

�
. It follows that

eMx=�(x)�(0)¡1=

"
ex ¡3e2x
3ex e2x

#
1
10

�
1 3
¡3 1

�
=

1
10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
:

(f) We can check that eMx equals the identity matrix if we set x=0:

1
10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
 x=0 1

10

�
1+9 3¡ 3
3¡ 3 9+1

�
=

�
1 0
0 1

�
This check does not require much effort and can even be done in our head while writing down eMx. There
is really no excuse for not doing it!
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Another perspective on the matrix exponential

Review. We achieved the milestone to introduce a matrix exponential in such a way that we
can treat a system of DEs, say y 0=My with y(0) = c, just as if the matrix M was a number:
namely, the unique solution is simply y= eMxc.
The price to pay is that the matrix eMx requires some work to actually compute (and proceeds by first determining
a different matrix solution �(x) using eigenvectors and eigenvalues). We offer below another way to think about
eMx (using Taylor series).

(exponential function) ex is the unique solution to y 0= y, y(0)= 1.

From here, it follows that ex=1+x+ x2

2!
+ x3

3!
+ :::.

The latter is the Taylor series for ex at x=0 that we have seen in Calculus II.
Important note. We can actually construct this infinite sum directly from y0= y and y(0)=1.

Indeed, observe how each term, when differentiated, produces the term before it. For instance, d

dx

x3

3!
=
x2

2!
.

Review. We defined the matrix exponential eMx as the unique matrix solution to the IVP

y 0=My ; y(0)= I:

We next observe that we can also make sense of the matrix exponential eMx as a power series.

Theorem 72. Let M be n�n. Then the matrix exponential satisfies

eM = I +M + 1
2!
M2+ 1

3!
M3+ :::

Proof. Define �(x)= I +Mx+
1

2!
M2x2+

1

3!
M3x3+ :::

�0(x) =
d
dx

�
I +Mx+

1
2!
M2x2+

1
3!
M3x3+ :::

�
= 0+M +M2x+

1
2!
M3x2+ :::=M�(x):

Clearly, �(0)= I. Therefore, �(x) is the fundamental matrix solution to y0=My, y(0)= I.

But that's precisely how we defined eMx earlier. It follows that �(x)= eMx. Now set x=1. �

Example 73. If A=
�
2 0
0 5

�
, then A100=

"
2100 0

0 5100

#
.

Example 74. If A=
�
2 0
0 5

�
, then eA=

�
1 0
0 1

�
+
�
2 0
0 5

�
+ 1

2!

"
22 0

0 52

#
+ ���=

"
e2 0

0 e5

#
.

Clearly, this works to obtain eD for every diagonal matrix D.

In particular, for Ax=
�
2x 0
0 5x

�
, eAx=

�
1 0
0 1

�
+
�
2x 0
0 5x

�
+ 1

2!

"
(2x)2 0

0 (5x)2

#
+ ���=

"
e2x 0

0 e5x

#
.

The following is a preview of how the matrix exponential deals with repeated characteristic roots.

Example 75. Determine eAx for A=
�
0 1
0 0

�
.

Solution. If we compute eigenvalues, we find that we get � = 0; 0 (multiplicity 2) but there is only one 0-
eigenvector (up to multiples). This means we are stuck with this approach�however, see next extra section how
we could still proceed.

The key here is to observe that A2=
�
0 0
0 0

�
. It follows that eAx= I +Ax=

�
1 0
0 1

�
+
�
0 x
0 0

�
=
�
1 x
0 1

�
.
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Extra: The case of repeated eigenvalues with too few eigenvectors

Review. To construct a fundamental matrix solution �(x) to y 0=My, we compute eigenvectors:

Given a �-eigenvector v, we have the corresponding solution y(x)=ve�x.
If there are enough eigenvectors, we can collect these as columns to obtain �(x).
The next example illustrates how to proceed if there are not enough eigenvectors.
In that case, instead of looking only for solutions of the type y(x) = ve�x, we also need to look for solutions
of the type y(x)= (vx+w)e�x. This can only happen if an eigenvalue is a repeated root of the characteristic
polynomial.

Example 76. Let M =
�

8 4
¡1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
0

�
.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��

8¡� 4
¡1 4¡�

��
=(8¡�)(4¡�)+ 4=�2¡ 12�+ 36=(�¡ 6)(�¡ 6)

Hence, the eigenvalues are �=6; 6 (meaning that 6 has multiplicity 2).

� To find eigenvectors v for �=6, we need to solve
�

2 4
¡1 ¡2

�
v=0.

Hence, v=
�
¡2
1

�
is an eigenvector for �=6. There is no independent second eigenvector.

� We therefore search for a solution of the form y(x)= (vx+w)e�x with �=6.

y0(x)= (�vx+�w+v)e�x=
!
My=(Mvx+Mw)e�x

Equating coefficients of x, we need �v=Mv and �w+v=Mw.

Hence, v must be an eigenvector (which we already computed); we choose v=
�
¡2
1

�
.

[Note that any multiple of y(x) will be another solution, so it doesn't matter which multiple of
�
¡2
1

�
we choose.]

�w+v=Mw or (M ¡�)w=v then becomes
�

2 4
¡1 ¡2

�
w=

�
¡2
1

�
.

One solution is w=
�
¡1
0

�
. [We only need one.]

Hence, the general solution is C1
�
¡2
1

�
e6x+C2

��
¡2
1

�
x+

�
¡1
0

��
e6x.

(b) The corresponding fundamental matrix solution is �=
"
¡2e6x ¡(2x+1)e6x

e6x xe6x

#
.

(c) Note that �(0)=
�
¡2 ¡1
1 0

�
, so that �(0)¡1=

�
0 1
¡1 ¡2

�
. It follows that

eMx=�(x)�(0)¡1=

"
¡2e6x ¡(2x+1)e6x

e6x xe6x

#�
0 1
¡1 ¡2

�
=

"
(2x+1)e6x 4xe6x

¡xe6x ¡(2x¡ 1) e6x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
0

�
=

"
(2x+1)e6x 4xe6x

¡xe6x ¡(2x¡ 1) e6x

#�
1
0

�
=

"
(2x+1)e6x

¡xe6x

#
.
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Notes for Lecture 12 Fri, 2/14/2025

Phase portraits and phase plane analysis

Our goal is to visualize the solutions to systems of equations. This works particularly well in the
case of systems of two differential equations. A system that can be written as

dx
dt

= f(x; y)

dy
dt

= g(x; y)

is called autonomous because it doesn't depend on the independent variable t.
Comment. Can you show that if x(t) and y(t) are a pair of solutions, then so is the pair x(t+ t0) and y(t+ t0)?

We can visualize solutions to such a system by plotting the points (x(t); y(t)) for increasing values
of t so that we get a curve (and we can attach an arrow to indicate the direction we're flowing
along that curve). Each such curve is called the trajectory of a solution.

Even better, we can do such a phase portrait without solving to get a formula for (x(t); y(t))!
That's because we can combine the two equations to get dy

dx
= g(x; y)

f(x; y)
, which allows us to make

a slope field! If a trajectory passes through a point (x; y), then we know that the slope at that

point must be dy

dx
= g(x; y)

f(x; y)
.

This allows us to sketch trajectories. However, it does not tell us everything about the corresponding solution
(x(t); y(t)) because we don't know at which times t the solution passes through the points on the curve.
However, we can visualize the speed with which a solution passes through the trajectory by attaching to a point
(x; y) not only the slope g(x; y)

f(x; y)
but the vector

�
f(x; y)
g(x; y)

�
. That vector has the same direction as the slope but

it also tells us in which direction we are moving and how fast (by its magnitude).

Example 77. Sketch some trajectories for the system dx

dt
=x � (y¡ 1), dy

dt
= y � (x¡ 1).

Solution. Let's look at the point (x; y)= (2;¡1), for instance. Then the DEs tell us that dx
dt
=x � (y¡1)=¡4

and dy

dt
= y � (x¡ 1)=¡1. We therefore attach the vector

�
dx

dt
;
dy

dt

�
=(¡4;¡1) to (x; y)= (2;¡1).

Note that if we use dy

dx
=

y � (x¡ 1)
x � (y¡ 1) directly, we find the slope dy

dx
=
¡1
¡4 =

1

4
. This is slightly less information

because it doesn't tell us that we are moving �left and down� as the arrows in the following plot indicate:

2 1 0 1 2

2

1

0

1

2
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Comment. In this example, we can solve the slope-field equation dy

dx
=

y(x¡ 1)
x(y¡ 1) using separation of variables.

Do it! We end up with the implicit solutions y¡ lnjy j=x¡ lnjxj+C.
If we plot these curves for various values of C, we get trajectories in the plot above. However, note that none
of this solving is needed for plotting by itself.
Sage. We can make Sage create such phase portraits for us!

>>> x,y = var('x y')

>>> streamline_plot((x*(y-1),y*(x-1)), (x,-3,3), (y,-3,3))

Equilibrium solutions

(x0; y0) is an equilibrium point of the system dx

dt
= f(x; y), dy

dt
= g(x; y) if

f(x0; y0)= 0 and g(x0; y0)= 0:

In that case, we have the constant (equilibrium) solution x(t)=x0, y(t)= y0.

Comment. Equilibrium points are also called critical points (or stationary points or rest points).

In a phase portrait, the equilibrium solutions are just a single point.
Recall that every other solution (x(t); y(t)) corresponds to a curve (parametrized by t), called the trajectory of
the solution (and we can adorn it with an arrow that indicates the direction of the �flow� of the solution).

We can learn a lot from how solutions behave near equilibrium points.

An equilibrium point is called:

� stable if all nearby solutions remain close to the equilibrium point;

� asymptotically stable if all nearby solutions remain close and �flow into� the equilibrium;

� unstable if it is not stable (some nearby solutions �flow away� from the equilibrium).

Comment. Note that asymptotically stable is a stronger condition than stable. A typical example of a stable,
but not asymptotically stable, equilibrium point is one where nearby solutions loop around the equilibrium point
without coming closer to it.
Advanced comment. For asymptotically stable, we kept the condition that nearby solutions remain close because
there are �weird� instances where trajectories come arbitrarily close to the equilibrium, then �flow away� but
eventually �flow into� (this would constitute an unstable equilibrium point).

Example 78. (cont'd) Consider again the system dx

dt
=x � (y¡ 1), dy

dt
= y � (x¡ 1).

(a) Determine the equilibrium points.

(b) Using the phase portrait from Example 77, classify the stability of each equilibrium point.

Solution.

(a) We solve x(y¡ 1)=0 (that is, x=0 or y=1) and y(x¡ 1)= 0 (that is, x=1 or y=0).
We conclude that the equilibrium points are (0; 0) and (1; 1).

(b) (0; 0) is asymptotically stable (because all nearby solutions �flow into� (0; 0)).
(1; 1) is unstable (because some nearby solutions �flow away� from (1; 1)).
Comment. We will soon learn how to determine stability without the need for a plot.
Comment. If you look carefully at the phase portrait near (1; 1), you can see that certain solutions get
attracted at first to (1; 1) and then �flow away� at the last moment. This suggests that there is a single
trajectory which actually �flows into� (1; 1). This constellation is typical and is called a saddle point.
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Notes for Lecture 13 Mon, 2/17/2025

Phase portraits of autonomous linear differential equations

Example 79. Consider the system dx

dt
= y¡ 5x, dy

dt
=4x¡ 2y.

(a) Determine the general solution.

(b) Make a phase portrait. Can you connect it with the general solution?

(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as
�
x
y

�0
=M

�
x
y

�
with M =

�
¡5 1
4 ¡2

�
.

M has ¡1-eigenvector
�
1
4

�
as well as ¡6-eigenvector

�
¡1
1

�
.

Hence, the general solution is
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t.

(b) We can have Sage make such a plot for us:

>>> x,y = var('x y')
streamline_plot((-5*x+y,4*x-2*y), (x,-4,4), (y,-4,4))

Question. In our plot, we also highlighted two lines
through the origin. Can you explain their signifi-
cance?
Explanation. The lines correspond to the spe-
cial solutionsC1

�
1
4

�
e¡t (green) and C2

�
¡1
1

�
e¡6t

(orange). For each, the trajectories consist of points
that are multiples of the vectors

�
1
4

�
and

�
¡1
1

�
,

respectively.
Note that each such solution starts at a point on
one of the lines and then �flows� into the origin.
(Because e¡t and e¡6t approach zero for large t.)

4 2 0 2 4

4

2

0

2

4

Question. Consider a point like (4; 4). Can you explain why the trajectory through that point doesn't go
somewhat straight to (0; 0) but rather flows nearly parallel the orange line towards the green line?

Explanation. A solution through (4;4) is of the form
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t (like any other

solution). Note that, if we increase t, then e¡6t becomes small much faster than e¡t.

As a consequence, we quickly get
�
x(t)
y(t)

�
�C1

�
1
4

�
e¡t, where the right-hand side is on the green line.

(c) The only equilibrium point is (0; 0) and it is asymptotically stable.
We can see this from the phase portrait but we can also determine it from the DE and our solution: first,
solving y¡ 5x=0 and 4x¡ 2y=0 we only get the unique solution x=0; y=0, which means that only
(0;0) is an equilibrium point. On the other hand, the general solution shows that every solution approaches
(0; 0) as t!1 because both e¡t and e¡6t approach 0.
In general. This is typical: if both eigenvalues are negative, then the equilibrium is asymptotically stable.
If at least one eigenvalue is positive, then the equilibrium is unstable.
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Example 80. Consider the system dx

dt
=5x¡ y, dy

dt
=2y¡ 4x.

(a) Determine the general solution.

(b) Make a phase portrait.

(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as
�
x
y

�0
=M

�
x
y

�
withM =¡

�
¡5 1
4 ¡2

�
, where the matrix

is exactly ¡1 times what it was in Example 79.

Consequently, M has 1-eigenvector
�
1
4

�
as well as 6-eigenvector

�
¡1
1

�
. (Can you explain why the

eigenvectors are the same and the eigenvalues changed sign?)

Thus, the general solution is
�
x(t)
y(t)

�
=C1

�
1
4

�
et+C2

�
¡1
1

�
e6t.

(b) We again have Sage make the plot for us:

>>> x,y = var('x y')
streamline_plot((5*x-y,-4*x+2*y), (x,-4,4), (y,-4,4))

4 2 0 2 4

4

2

0

2

4

Note that the phase portrait is identical to the one in Example 79, except that the arrows are reversed.

(c) The only equilibrium point is (0; 0) and it is unstable.

We can see this from the phase portrait but we can also see it readily from our general solution
�
x(t)
y(t)

�
=

C1
�
1
4

�
et+C2

�
¡1
1

�
e6t because et and e6t go to 1 as t!1.

In general. If at least one eigenvalue is positive, then the equilibrium is unstable.

Example 81. Suppose the system dx

dt
= f(x; y), dy

dt
= g(x; y) has general solution

�
x(t)
y(t)

�
=

C1
�
1
4

�
e¡t+C2

�
¡1
1

�
e6t. Determine all equilibrium points and their stability.

Solution. Recall that equilibrium points correspond to constant solutions. Clearly, the only constant solution is
the zero solution

�
x(t)
y(t)

�
=
�
0
0

�
. Equivalently, the only equilibrium point is (0; 0).

Since e6t!1 as t!1, we conclude that the equilibrium is unstable. (Note that the solution C2
�
¡1
1

�
e6t

starts arbitrarily near to (0; 0) but always �flows away�).
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