Example 176. Find the unique solution u(x, y) to:

Solution. This is the special case of the previous example with a = 1, b = 2 and f(x) = 1 for $x \in (0, 1)$.

From Example 136, we know that f(x) has the Fourier sine series

$$f(x) = \sum_{\substack{n=1 \\ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi x), \quad x \in (0, 1).$$

Hence,

$$u(x,y) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{1}{1 - e^{4\pi n}} \sin(\pi n x) (e^{\pi n y} - e^{\pi n (4-y)}).$$

Comment. The temperature at the center is $u(\frac{1}{2}, 1) \approx 0.0549$ (only the first term of the infinite sum suffices for this estimate; the first three terms suffice for 9 digits of accuracy).

Example 177. Find the unique solution u(x, y) to:

Solution. Instead of starting from scratch (homework exercise!), let us reuse our computations: Let v(x, y) = u(x, 2 - y). Then $v_{xx} + v_{yy} = 0$, v(x, 0) = 3, v(x, 2) = 0, v(0, y) = 0, v(1, y) = 0. Hence, it follows from the previous example that

$$v(x,y) = 3\sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{1}{1 - e^{4\pi n}} \sin(\pi n x) (e^{\pi n y} - e^{\pi n (4 - y)}).$$

Consequently,

$$u(x,y) = v(x,2-y) = 3\sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{1}{1-e^{4\pi n}} \sin(\pi n x) (e^{\pi n(2-y)} - e^{\pi n(2+y)})$$

$$u_{xx} + u_{yy} = 0$$
 (PDE)
 $u(x,0) = 1$
 $u(x,2) = 0$
 $u(0,y) = 0$ (BC)
 $u(1,y) = 0$

$$u_{xx} + u_{yy} = 0 \quad (PDE)$$

$$u(x, 0) = 0$$

$$u(x, 2) = 3$$

$$u(0, y) = 0$$

$$u(1, y) = 0$$

(BC)

Example 178. Find the unique solution u(x, y) to:

$$u_{xx} + u_{yy} = 0$$

$$u(x,0) = 2, \quad u(x,2) = 3$$

$$u(0,y) = 0, \quad u(1,y) = 0$$

Solution. Note that u(x, y) is a combination of the solutions to the previous two examples!

$$\sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{\sin(\pi nx)}{1 - e^{4\pi n}} [2(e^{\pi ny} - e^{-\pi n(y-4)}) + 3(e^{\pi n(2-y)} - e^{\pi n(2+y)})].$$

$$u_{xx} + u_{yy} = 0$$
 (PDE)

$$u(x, 0) = 4\sin(\pi x) - 5\sin(3\pi x)$$

$$u(x, 2) = 0$$

$$u(0, y) = 0$$

$$u(3, y) = 0$$

(BC)

Example 179. Find the unique solution u(x, y) to:

Solution.

- We look for solutions u(x, y) = X(x)Y(y) (separation of variables). Plugging into (PDE), we get X''(x)Y(y) + X(x)Y''(y), and so $\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \text{const.}$ We thus have X'' - const X = 0 and Y'' + const Y = 0.
- From the last three (BC), we get X(0) = 0, X(3) = 0, Y(2) = 0.
- So X solves $X'' + \lambda X = 0$ (we choose $\lambda = -\text{const}$), X(0) = 0, X(3) = 0. From earlier (or do it!), we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are $X(x) = \sin\left(\frac{1}{3}\pi nx\right)$ corresponding to $\lambda = \left(\frac{1}{3}\pi n\right)^2$, n = 1, 2, 3...

u(x, y) =

- On the other hand, Y solves $Y'' \lambda Y = 0$, and hence $Y(y) = Ae^{\sqrt{\lambda}y} + Be^{-\sqrt{\lambda}y}$. The condition Y(2) = 0 implies that $Ae^{2\sqrt{\lambda}} + Be^{-2\sqrt{\lambda}} = 0$ so that $B = -Ae^{4\sqrt{\lambda}}$. Hence, $Y(y) = A(e^{\sqrt{\lambda}y} - e^{\sqrt{\lambda}(4-y)}) = A(e^{\frac{1}{3}\pi ny} - e^{\frac{1}{3}\pi n(4-y)})$.
- Taken together, we have the solutions $u_n(x, y) = \sin\left(\frac{1}{3}\pi n x\right)\left(e^{\frac{1}{3}\pi n y} e^{\frac{1}{3}\pi n(4-y)}\right)$ solving (PDE)+(BC), with the exception of $u(x, 0) = 4\sin(\pi x) 5\sin(3\pi x)$.
- At y = 0, $u_n(x, 0) = \sin\left(\frac{1}{3}\pi nx\right)\left(1 e^{\frac{4}{3}\pi n}\right)$. In particular, $u_3(x, 0) = \sin(\pi x)(1 - e^{4\pi})$ and $u_9(x, 0) = \sin(3\pi x)(1 - e^{12\pi})$. Hence, $4\sin(\pi x) - 5\sin(3\pi x) = \frac{4}{1 - e^{4\pi}}u_3(x, 0) - \frac{5}{1 - e^{12\pi}}u_9(x, 0)$. Therefore our overall solution is

$$\begin{aligned} u(x,y) &= \frac{4}{1 - e^{4\pi}} u_3(x,y) - \frac{5}{1 - e^{12\pi}} u_9(x,y) \\ &= \frac{4}{1 - e^{4\pi}} \sin(\pi x) (e^{\pi y} - e^{\pi(4-y)}) - \frac{5}{1 - e^{12\pi}} \sin(3\pi x) (e^{3\pi y} - e^{3\pi(4-y)}). \end{aligned}$$

Comment. Of course, in general, our inhomogeneous (BC) will be a function f(x) that is not such an obvious combination of our special solutions $u_n(x,0)$. In that case, we need to compute an appropriate Fourier expansion of f(x) first (here, the Fourier sine series of f(x)).

Armin Straub straub@southalabama.edu