
Notes for Lecture 36 Mon, 4/28/2025

Example 176. Find the unique solution u(x; y) to:
uxx+uyy = 0 (PDE)
u(x; 0) = 1
u(x; 2) = 0
u(0; y) = 0
u(1; y) = 0

(BC)

Solution. This is the special case of the previous example with a= 1,
b=2 and f(x)= 1 for x2 (0; 1).
From Example 136, we know that f(x) has the Fourier sine series

f(x)=
X
n=1
n odd

1
4
�n

sin(n�x); x2 (0; 1):

Hence,

u(x; y)=
X
n=1
n odd

1
4
�n

1

1¡ e4�n sin(�nx)(e�ny¡ e�n(4¡y)):

Comment. The temperature at the center is u(1
2
;1)�0.0549 (only the

first term of the infinite sum suffices for this estimate; the first three
terms suffice for 9 digits of accuracy). 0.0 0.2 0.4 0.6 0.8 1.0
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Example 177. Find the unique solution u(x; y) to:
uxx+uyy=0 (PDE)
u(x; 0) = 0
u(x; 2) = 3
u(0; y) = 0
u(1; y) = 0

(BC)

Solution. Instead of starting from scratch (homework exercise!), let us reuse our computations:
Let v(x; y)=u(x; 2¡ y). Then vxx+ vyy=0, v(x; 0)= 3, v(x; 2)= 0, v(0; y)= 0, v(1; y)= 0.
Hence, it follows from the previous example that

v(x; y)= 3
X
n=1
n odd

1
4
�n

1

1¡ e4�n sin(�nx)(e�ny¡ e�n(4¡y)):

Consequently,

u(x; y)= v(x; 2¡ y)= 3
X
n=1
n odd

1
4
�n

1

1¡ e4�n sin(�nx)(e�n(2¡y)¡ e�n(2+y)):
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Example 178. Find the unique solution u(x; y) to:

uxx+uyy = 0
u(x; 0)=2; u(x; 2)=3
u(0; y)= 0; u(1; y)=0

Solution. Note that u(x; y) is a combination of the solutions to the
previous two examples!

u(x; y)=X
n=1
n odd

1
4
�n

sin(�nx)
1¡ e4�n [2(e

�ny¡ e¡�n(y¡4))+ 3(e�n(2¡y)¡ e�n(2+y))]:
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Example 179. Find the unique solution u(x; y) to:
uxx+uyy = 0 (PDE)
u(x; 0) = 4sin(�x)¡ 5sin(3�x)
u(x; 2) = 0
u(0; y) = 0
u(3; y) = 0

(BC)

Solution.

� We look for solutions u(x; y)=X(x)Y (y) (separation of variables).

Plugging into (PDE), we get X 00(x)Y (y)+X(x)Y 00(y), and so X 00(x)

X(x)
=¡Y 00(y)

Y (y)
= const.

We thus have X 00¡ constX =0 and Y 00+ constY =0.

� From the last three (BC), we get X(0)= 0, X(3)= 0, Y (2)= 0.

� So X solves X 00+�X =0 (we choose �=¡const), X(0)=0, X(3)=0.
From earlier (or do it!), we know that, up to multiples, the only nonzero solutions of this eigenvalue

problem are X(x)= sin
�
1

3
�nx

�
corresponding to �=

�
1

3
�n
�
2
, n=1; 2; 3:::.

� On the other hand, Y solves Y 00¡�Y =0, and hence Y (y)=Ae �
p

y+Be¡ �
p

y.

The condition Y (2)=0 implies that Ae2 �
p

+Be¡2 �
p

=0 so that B=¡Ae4 �
p

.

Hence, Y (y)=A
¡
e �
p

y¡ e �
p

(4¡y)�=A
�
e
1
3
�ny¡ e

1
3
�n(4¡y)

�
.

� Taken together, we have the solutions un(x; y) = sin
�
1

3
�nx

��
e
1
3
�ny ¡ e

1
3
�n(4¡y)

�
solving

(PDE)+(BC), with the exception of u(x; 0)= 4sin(�x)¡ 5sin(3�x).

� At y=0, un(x; 0)= sin
�
1

3
�nx

��
1¡ e

4
3
�n
�
.

In particular, u3(x; 0)= sin(�x)(1¡ e4�) and u9(x; 0)= sin(3�x)(1¡ e12�).

Hence, 4sin(�x)¡ 5sin(3�x)= 4

1¡ e4�
u3(x; 0)¡ 5

1¡ e12�
u9(x; 0). Therefore our overall solution is

u(x; y) =
4

1¡ e4�u3(x; y)¡
5

1¡ e12�u9(x; y)

=
4

1¡ e4� sin(�x)(e
�y¡ e�(4¡y))¡ 5

1¡ e12� sin(3�x)(e
3�y¡ e3�(4¡y)):

Comment. Of course, in general, our inhomogeneous (BC) will be a function f(x) that is not such an obvious
combination of our special solutions un(x;0). In that case, we need to compute an appropriate Fourier expansion
of f(x) first (here, the Fourier sine series of f(x)).
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