
Notes for Lecture 12 Fri, 2/14/2025

Phase portraits and phase plane analysis

Our goal is to visualize the solutions to systems of equations. This works particularly well in the
case of systems of two differential equations. A system that can be written as

dx
dt

= f(x; y)

dy
dt

= g(x; y)

is called autonomous because it doesn't depend on the independent variable t.
Comment. Can you show that if x(t) and y(t) are a pair of solutions, then so is the pair x(t+ t0) and y(t+ t0)?

We can visualize solutions to such a system by plotting the points (x(t); y(t)) for increasing values
of t so that we get a curve (and we can attach an arrow to indicate the direction we're flowing
along that curve). Each such curve is called the trajectory of a solution.

Even better, we can do such a phase portrait without solving to get a formula for (x(t); y(t))!
That's because we can combine the two equations to get dy

dx
= g(x; y)

f(x; y)
, which allows us to make

a slope field! If a trajectory passes through a point (x; y), then we know that the slope at that

point must be dy

dx
= g(x; y)

f(x; y)
.

This allows us to sketch trajectories. However, it does not tell us everything about the corresponding solution
(x(t); y(t)) because we don't know at which times t the solution passes through the points on the curve.
However, we can visualize the speed with which a solution passes through the trajectory by attaching to a point
(x; y) not only the slope g(x; y)

f(x; y)
but the vector

�
f(x; y)
g(x; y)

�
. That vector has the same direction as the slope but

it also tells us in which direction we are moving and how fast (by its magnitude).

Example 77. Sketch some trajectories for the system dx

dt
=x � (y¡ 1), dy

dt
= y � (x¡ 1).

Solution. Let's look at the point (x; y)= (2;¡1), for instance. Then the DEs tell us that dx
dt
=x � (y¡1)=¡4

and dy

dt
= y � (x¡ 1)=¡1. We therefore attach the vector

�
dx

dt
;
dy

dt

�
=(¡4;¡1) to (x; y)= (2;¡1).

Note that if we use dy

dx
=

y � (x¡ 1)
x � (y¡ 1) directly, we find the slope dy

dx
=
¡1
¡4 =

1

4
. This is slightly less information

because it doesn't tell us that we are moving �left and down� as the arrows in the following plot indicate:
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Comment. In this example, we can solve the slope-field equation dy

dx
=

y(x¡ 1)
x(y¡ 1) using separation of variables.

Do it! We end up with the implicit solutions y¡ lnjy j=x¡ lnjxj+C.
If we plot these curves for various values of C, we get trajectories in the plot above. However, note that none
of this solving is needed for plotting by itself.
Sage. We can make Sage create such phase portraits for us!

>>> x,y = var('x y')

>>> streamline_plot((x*(y-1),y*(x-1)), (x,-3,3), (y,-3,3))

Equilibrium solutions

(x0; y0) is an equilibrium point of the system dx

dt
= f(x; y), dy

dt
= g(x; y) if

f(x0; y0)= 0 and g(x0; y0)= 0:

In that case, we have the constant (equilibrium) solution x(t)=x0, y(t)= y0.

Comment. Equilibrium points are also called critical points (or stationary points or rest points).

In a phase portrait, the equilibrium solutions are just a single point.
Recall that every other solution (x(t); y(t)) corresponds to a curve (parametrized by t), called the trajectory of
the solution (and we can adorn it with an arrow that indicates the direction of the �flow� of the solution).

We can learn a lot from how solutions behave near equilibrium points.

An equilibrium point is called:

� stable if all nearby solutions remain close to the equilibrium point;

� asymptotically stable if all nearby solutions remain close and �flow into� the equilibrium;

� unstable if it is not stable (some nearby solutions �flow away� from the equilibrium).

Comment. Note that asymptotically stable is a stronger condition than stable. A typical example of a stable,
but not asymptotically stable, equilibrium point is one where nearby solutions loop around the equilibrium point
without coming closer to it.
Advanced comment. For asymptotically stable, we kept the condition that nearby solutions remain close because
there are �weird� instances where trajectories come arbitrarily close to the equilibrium, then �flow away� but
eventually �flow into� (this would constitute an unstable equilibrium point).

Example 78. (cont'd) Consider again the system dx

dt
=x � (y¡ 1), dy

dt
= y � (x¡ 1).

(a) Determine the equilibrium points.

(b) Using the phase portrait from Example 77, classify the stability of each equilibrium point.

Solution.

(a) We solve x(y¡ 1)=0 (that is, x=0 or y=1) and y(x¡ 1)= 0 (that is, x=1 or y=0).
We conclude that the equilibrium points are (0; 0) and (1; 1).

(b) (0; 0) is asymptotically stable (because all nearby solutions �flow into� (0; 0)).
(1; 1) is unstable (because some nearby solutions �flow away� from (1; 1)).
Comment. We will soon learn how to determine stability without the need for a plot.
Comment. If you look carefully at the phase portrait near (1; 1), you can see that certain solutions get
attracted at first to (1; 1) and then �flow away� at the last moment. This suggests that there is a single
trajectory which actually �flows into� (1; 1). This constellation is typical and is called a saddle point.
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