
Notes for Lecture 11 Wed, 2/12/2025

Example 71. Suppose that eMx= 1

10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
.

(a) Without doing any computations, determine Mn.

(b) What is M?

(c) Without doing any computations, determine the eigenvalues and eigenvectors of M .

(d) From those, write down a simple fundamental matrix solution to y 0=My.

(e) From that fundamental matrix solution, how can we compute eMx? (If we didn't know it already . . . )

(f) Having computed eMx, what is a simple check that we can (should!) make?

Solution.

(a) Since ex and e2x correspond to eigenvalues 1 and 2, we just need to replace these by 1n=1 and 2n:

Mn=
1
10

�
1+9 � 2n 3¡ 3 � 2n
3¡ 3 � 2n 9+2n

�

(b) We can simply set n=1 in our formula for Mn, to get M =
1

10

�
19 ¡3
¡3 11

�
.

(c) The eigenvalues are 1 and 2 (because eMx contains the exponentials ex and e2x).

Looking at the coefficients of ex in the first column of eMx, we see that
�
1
3

�
is a 1-eigenvector.

[We can also look the second column of eMx, to obtain
�
3
9

�
which is a multiple and thus equivalent.]

Likewise, by looking at the coefficients of e2x, we see that
�

9
¡3

�
or, equivalently,

�
¡3
1

�
is a 2-eigenvector.

Comment. To see where this is coming from, keep in mind that, associated to a �-eigenvector v, we
have the corresponding solution y(x) = ve�x of the DE y0=My. On the other hand, the columns of
eMx are solutions to that DE and, therefore, must be linear combinations of these ve�x.

(d) From the eigenvalues and eigenvectors, we know that
�
1
3

�
ex and

�
¡3
1

�
e2x are solutions (and that the

general solutions consists of the linear combinations of these two).

Selecting these as the columns, we obtain the fundamental matrix solution �(x)=
"
ex ¡3e2x
3ex e2x

#
.

Comment. The fundamental refers to the fact that the columns combine to the general solution.
The matrix solution means that �(x) itself satisfies the DE: namely, we have �0=M�. That this is the
case is a consequence of matrix multiplication (namely, say, the second column of M� is defined to be
M times the second column of �; but that column is a vector solution and therefore solves the DE).

(e) We can compute eMx as eMx=�(x)�(0)¡1.

If �(x)=
"
ex ¡3e2x
3ex e2x

#
, then �(0)=

�
1 ¡3
3 1

�
and, hence, �(0)¡1= 1

10

�
1 3
¡3 1

�
. It follows that

eMx=�(x)�(0)¡1=

"
ex ¡3e2x
3ex e2x

#
1
10

�
1 3
¡3 1

�
=

1
10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
:

(f) We can check that eMx equals the identity matrix if we set x=0:

1
10

"
ex+9e2x 3ex¡ 3e2x
3ex¡ 3e2x 9ex+ e2x

#
 x=0 1

10

�
1+9 3¡ 3
3¡ 3 9+1

�
=

�
1 0
0 1

�
This check does not require much effort and can even be done in our head while writing down eMx. There
is really no excuse for not doing it!
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Another perspective on the matrix exponential

Review. We achieved the milestone to introduce a matrix exponential in such a way that we
can treat a system of DEs, say y 0=My with y(0) = c, just as if the matrix M was a number:
namely, the unique solution is simply y= eMxc.
The price to pay is that the matrix eMx requires some work to actually compute (and proceeds by first determining
a different matrix solution �(x) using eigenvectors and eigenvalues). We offer below another way to think about
eMx (using Taylor series).

(exponential function) ex is the unique solution to y 0= y, y(0)= 1.

From here, it follows that ex=1+x+ x2

2!
+ x3

3!
+ :::.

The latter is the Taylor series for ex at x=0 that we have seen in Calculus II.
Important note. We can actually construct this infinite sum directly from y0= y and y(0)=1.

Indeed, observe how each term, when differentiated, produces the term before it. For instance, d

dx

x3

3!
=
x2

2!
.

Review. We defined the matrix exponential eMx as the unique matrix solution to the IVP

y 0=My ; y(0)= I:

We next observe that we can also make sense of the matrix exponential eMx as a power series.

Theorem 72. Let M be n�n. Then the matrix exponential satisfies

eM = I +M + 1
2!
M2+ 1

3!
M3+ :::

Proof. Define �(x)= I +Mx+
1

2!
M2x2+

1

3!
M3x3+ :::

�0(x) =
d
dx

�
I +Mx+

1
2!
M2x2+

1
3!
M3x3+ :::

�
= 0+M +M2x+

1
2!
M3x2+ :::=M�(x):

Clearly, �(0)= I. Therefore, �(x) is the fundamental matrix solution to y0=My, y(0)= I.

But that's precisely how we defined eMx earlier. It follows that �(x)= eMx. Now set x=1. �

Example 73. If A=
�
2 0
0 5

�
, then A100=

"
2100 0

0 5100

#
.

Example 74. If A=
�
2 0
0 5

�
, then eA=

�
1 0
0 1

�
+
�
2 0
0 5

�
+ 1

2!

"
22 0

0 52

#
+ ���=

"
e2 0

0 e5

#
.

Clearly, this works to obtain eD for every diagonal matrix D.

In particular, for Ax=
�
2x 0
0 5x

�
, eAx=

�
1 0
0 1

�
+
�
2x 0
0 5x

�
+ 1

2!

"
(2x)2 0

0 (5x)2

#
+ ���=

"
e2x 0

0 e5x

#
.

The following is a preview of how the matrix exponential deals with repeated characteristic roots.

Example 75. Determine eAx for A=
�
0 1
0 0

�
.

Solution. If we compute eigenvalues, we find that we get � = 0; 0 (multiplicity 2) but there is only one 0-
eigenvector (up to multiples). This means we are stuck with this approach�however, see next extra section how
we could still proceed.

The key here is to observe that A2=
�
0 0
0 0

�
. It follows that eAx= I +Ax=

�
1 0
0 1

�
+
�
0 x
0 0

�
=
�
1 x
0 1

�
.
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Extra: The case of repeated eigenvalues with too few eigenvectors

Review. To construct a fundamental matrix solution �(x) to y 0=My, we compute eigenvectors:

Given a �-eigenvector v, we have the corresponding solution y(x)=ve�x.
If there are enough eigenvectors, we can collect these as columns to obtain �(x).
The next example illustrates how to proceed if there are not enough eigenvectors.
In that case, instead of looking only for solutions of the type y(x) = ve�x, we also need to look for solutions
of the type y(x)= (vx+w)e�x. This can only happen if an eigenvalue is a repeated root of the characteristic
polynomial.

Example 76. Let M =
�

8 4
¡1 4

�
.

(a) Determine the general solution to y 0=My.

(b) Determine a fundamental matrix solution to y 0=My.

(c) Compute eMx.

(d) Solve the initial value problem y 0=My with y(0)=
�
1
0

�
.

Solution.

(a) We determine the eigenvectors of M . The characteristic polynomial is:

det(M ¡�I)=det
��

8¡� 4
¡1 4¡�

��
=(8¡�)(4¡�)+ 4=�2¡ 12�+ 36=(�¡ 6)(�¡ 6)

Hence, the eigenvalues are �=6; 6 (meaning that 6 has multiplicity 2).

� To find eigenvectors v for �=6, we need to solve
�

2 4
¡1 ¡2

�
v=0.

Hence, v=
�
¡2
1

�
is an eigenvector for �=6. There is no independent second eigenvector.

� We therefore search for a solution of the form y(x)= (vx+w)e�x with �=6.

y0(x)= (�vx+�w+v)e�x=
!
My=(Mvx+Mw)e�x

Equating coefficients of x, we need �v=Mv and �w+v=Mw.

Hence, v must be an eigenvector (which we already computed); we choose v=
�
¡2
1

�
.

[Note that any multiple of y(x) will be another solution, so it doesn't matter which multiple of
�
¡2
1

�
we choose.]

�w+v=Mw or (M ¡�)w=v then becomes
�

2 4
¡1 ¡2

�
w=

�
¡2
1

�
.

One solution is w=
�
¡1
0

�
. [We only need one.]

Hence, the general solution is C1
�
¡2
1

�
e6x+C2

��
¡2
1

�
x+

�
¡1
0

��
e6x.

(b) The corresponding fundamental matrix solution is �=
"
¡2e6x ¡(2x+1)e6x

e6x xe6x

#
.

(c) Note that �(0)=
�
¡2 ¡1
1 0

�
, so that �(0)¡1=

�
0 1
¡1 ¡2

�
. It follows that

eMx=�(x)�(0)¡1=

"
¡2e6x ¡(2x+1)e6x

e6x xe6x

#�
0 1
¡1 ¡2

�
=

"
(2x+1)e6x 4xe6x

¡xe6x ¡(2x¡ 1) e6x

#
:

(d) The solution to the IVP is y(x)= eMx
�
1
0

�
=

"
(2x+1)e6x 4xe6x

¡xe6x ¡(2x¡ 1) e6x

#�
1
0

�
=

"
(2x+1)e6x

¡xe6x

#
.
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