Notes for Lecture 11

Example 71. Suppose that $e^{Mx} = \frac{1}{10} \begin{bmatrix} e^x + 9e^{2x} & 3e^x - 3e^{2x} \\ 3e^x - 3e^{2x} & 9e^x + e^{2x} \end{bmatrix}$.

- (a) Without doing any computations, determine M^n .
- (b) What is M?
- (c) Without doing any computations, determine the eigenvalues and eigenvectors of M.
- (d) From those, write down a simple fundamental matrix solution to y' = My.
- (e) From that fundamental matrix solution, how can we compute e^{Mx} ? (If we didn't know it already...)
- (f) Having computed e^{Mx} , what is a simple check that we can (should!) make?

Solution.

(a) Since e^x and e^{2x} correspond to eigenvalues 1 and 2, we just need to replace these by $1^n = 1$ and 2^n :

$M^n =$	1	$1+9\cdot 2^n$	$3 - 3 \cdot 2^n$
	$\overline{10}$	$3-3\cdot 2^n$	$9 + 2^n$

- (b) We can simply set n=1 in our formula for M^n , to get $M = \frac{1}{10} \begin{bmatrix} 19 & -3 \\ -3 & 11 \end{bmatrix}$.
- (c) The eigenvalues are 1 and 2 (because e^{Mx} contains the exponentials e^x and e^{2x}). Looking at the coefficients of e^x in the first column of e^{Mx}, we see that [1] 3] is a 1-eigenvector. [We can also look the second column of e^{Mx}, to obtain [3] 9] which is a multiple and thus equivalent.] Likewise, by looking at the coefficients of e^{2x}, we see that [9] -3] or, equivalently, [-3] is a 2-eigenvector. Comment. To see where this is coming from, keep in mind that, associated to a λ-eigenvector v, we have the corresponding solution y(x) = ve^{λx} of the DE y' = My. On the other hand, the columns of e^{Mx} are solutions to that DE and, therefore, must be linear combinations of these ve^{λx}.
- (d) From the eigenvalues and eigenvectors, we know that $\begin{bmatrix} 1\\3 \end{bmatrix} e^x$ and $\begin{bmatrix} -3\\1 \end{bmatrix} e^{2x}$ are solutions (and that the general solutions consists of the linear combinations of these two).

Selecting these as the columns, we obtain the fundamental matrix solution $\Phi(x) = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix}$.

Comment. The fundamental refers to the fact that the columns combine to the general solution. The matrix solution means that $\Phi(x)$ itself satisfies the DE: namely, we have $\Phi' = M\Phi$. That this is the case is a consequence of matrix multiplication (namely, say, the second column of $M\Phi$ is defined to be M times the second column of Φ ; but that column is a vector solution and therefore solves the DE).

(e) We can compute e^{Mx} as $e^{Mx} = \Phi(x)\Phi(0)^{-1}$.

If
$$\Phi(x) = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix}$$
, then $\Phi(0) = \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$ and, hence, $\Phi(0)^{-1} = \frac{1}{10} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}$. It follows that $e^{Mx} = \Phi(x)\Phi(0)^{-1} = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix} \frac{1}{10} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} e^x + 9e^{2x} & 3e^x - 3e^{2x} \\ 3e^x - 3e^{2x} & 9e^x + e^{2x} \end{bmatrix}$.

(f) We can check that e^{Mx} equals the identity matrix if we set x = 0:

$$\frac{1}{10} \begin{vmatrix} e^x + 9e^{2x} & 3e^x - 3e^{2x} \\ 3e^x - 3e^{2x} & 9e^x + e^{2x} \end{vmatrix} \xrightarrow{x=0} \frac{1}{10} \begin{bmatrix} 1+9 & 3-3 \\ 3-3 & 9+1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This check does not require much effort and can even be done in our head while writing down e^{Mx} . There is really no excuse for not doing it!

Armin Straub straub@southalabama.edu **Review.** We achieved the milestone to introduce a **matrix exponential** in such a way that we can treat a system of DEs, say y' = My with y(0) = c, just as if the matrix M was a number: namely, the unique solution is simply $y = e^{Mx}c$.

The price to pay is that the matrix e^{Mx} requires some work to actually compute (and proceeds by first determining a different matrix solution $\Phi(x)$ using eigenvectors and eigenvalues). We offer below another way to think about e^{Mx} (using Taylor series).

(exponential function) e^x is the unique solution to y' = y, y(0) = 1. From here, it follows that $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$

The latter is the Taylor series for e^x at x = 0 that we have seen in Calculus II.

Important note. We can actually construct this infinite sum directly from y' = y and y(0) = 1. Indeed, observe how each term, when differentiated, produces the term before it. For instance, $\frac{d}{dx}\frac{x^3}{3!} = \frac{x^2}{2!}$.

Review. We defined the matrix exponential e^{Mx} as the unique matrix solution to the IVP

$$\boldsymbol{y}' = M\boldsymbol{y}, \quad \boldsymbol{y}(0) = I.$$

We next observe that we can also make sense of the matrix exponential e^{Mx} as a power series.

Theorem 72. Let M be $n \times n$. Then the **matrix exponential** satisfies

$$e^{M} = I + M + \frac{1}{2!}M^{2} + \frac{1}{3!}M^{3} + \dots$$

Proof. Define $\Phi(x) = I + Mx + \frac{1}{2!}M^2x^2 + \frac{1}{3!}M^3x^3 + \dots$

$$\begin{split} \Phi'(x) &= \frac{\mathrm{d}}{\mathrm{d}x} \bigg[I + Mx + \frac{1}{2!} M^2 x^2 + \frac{1}{3!} M^3 x^3 + \dots \bigg] \\ &= 0 + M + M^2 x + \frac{1}{2!} M^3 x^2 + \dots = M \Phi(x). \end{split}$$

Clearly, $\Phi(0) = I$. Therefore, $\Phi(x)$ is the fundamental matrix solution to $\mathbf{y}' = M\mathbf{y}$, $\mathbf{y}(0) = I$. But that's precisely how we defined e^{Mx} earlier. It follows that $\Phi(x) = e^{Mx}$. Now set x = 1.

Example 73. If $A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$, then $A^{100} = \begin{bmatrix} 2^{100} & 0 \\ 0 & 5^{100} \end{bmatrix}$.

Example 74. If $A = \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix}$, then $e^A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} + \frac{1}{2!} \begin{bmatrix} 2^2 & 0 \\ 0 & 5^2 \end{bmatrix} + \dots = \begin{bmatrix} e^2 & 0 \\ 0 & e^5 \end{bmatrix}$. Clearly, this works to obtain e^D for every diagonal matrix D.

In particular, for $Ax = \begin{bmatrix} 2x & 0 \\ 0 & 5x \end{bmatrix}$, $e^{Ax} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 2x & 0 \\ 0 & 5x \end{bmatrix} + \frac{1}{2!} \begin{bmatrix} (2x)^2 & 0 \\ 0 & (5x)^2 \end{bmatrix} + \dots = \begin{bmatrix} e^{2x} & 0 \\ 0 & e^{5x} \end{bmatrix}$.

The following is a preview of how the matrix exponential deals with repeated characteristic roots.

Example 75. Determine e^{Ax} for $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

Solution. If we compute eigenvalues, we find that we get $\lambda = 0, 0$ (multiplicity 2) but there is only one 0-eigenvector (up to multiples). This means we are stuck with this approach—however, see next extra section how we could still proceed.

The key here is to observe that $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. It follows that $e^{Ax} = I + Ax = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & x \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}$.

Review. To construct a fundamental matrix solution $\Phi(x)$ to $\mathbf{y}' = M\mathbf{y}$, we compute eigenvectors: Given a λ -eigenvector \mathbf{v} , we have the corresponding solution $\mathbf{y}(x) = \mathbf{v}e^{\lambda x}$.

If there are enough eigenvectors, we can collect these as columns to obtain $\Phi(x)$.

The next example illustrates how to proceed if there are not enough eigenvectors.

In that case, instead of looking only for solutions of the type $y(x) = ve^{\lambda x}$, we also need to look for solutions of the type $y(x) = (vx + w)e^{\lambda x}$. This can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Example 76. Let $M = \begin{bmatrix} 8 & 4 \\ -1 & 4 \end{bmatrix}$.

- (a) Determine the general solution to y' = My.
- (b) Determine a fundamental matrix solution to y' = My.
- (c) Compute e^{Mx} .
- (d) Solve the initial value problem $\mathbf{y}' = M\mathbf{y}$ with $\mathbf{y}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Solution.

- (a) We determine the eigenvectors of M. The characteristic polynomial is: $det(M - \lambda I) = det\left(\begin{bmatrix} 8-\lambda & 4\\ -1 & 4-\lambda \end{bmatrix}\right) = (8 - \lambda)(4 - \lambda) + 4 = \lambda^2 - 12\lambda + 36 = (\lambda - 6)(\lambda - 6)$ Hence, the eigenvalues are $\lambda = 6, 6$ (meaning that 6 has multiplicity 2).
 - To find eigenvectors \boldsymbol{v} for $\lambda = 6$, we need to solve $\begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \boldsymbol{v} = \boldsymbol{0}$. Hence, $\boldsymbol{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = 6$. There is no independent second eigenvector.
 - We therefore search for a solution of the form $\mathbf{y}(x) = (\mathbf{v}x + \mathbf{w})e^{\lambda x}$ with $\lambda = 6$. $\mathbf{y}'(x) = (\lambda \mathbf{v}x + \lambda \mathbf{w} + \mathbf{v})e^{\lambda x} \stackrel{!}{=} M\mathbf{y} = (M\mathbf{v}x + M\mathbf{w})e^{\lambda x}$ Equating coefficients of x, we need $\lambda \mathbf{v} = M\mathbf{v}$ and $\lambda \mathbf{w} + \mathbf{v} = M\mathbf{w}$. Hence, \mathbf{v} must be an eigenvector (which we already computed); we choose $\mathbf{v} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$. [Note that any multiple of $\mathbf{y}(x)$ will be another solution, so it doesn't matter which multiple of $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$ we choose.] $\lambda \mathbf{w} + \mathbf{v} = M\mathbf{w}$ or $(M - \lambda)\mathbf{w} = \mathbf{v}$ then becomes $\begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \mathbf{w} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$. One solution is $\mathbf{w} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$. [We only need one.]

Hence, the general solution is $C_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} e^{6x} + C_2 \left(\begin{bmatrix} -2 \\ 1 \end{bmatrix} x + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right) e^{6x}$.

- (b) The corresponding fundamental matrix solution is $\Phi = \begin{bmatrix} -2e^{6x} & -(2x+1)e^{6x} \\ e^{6x} & xe^{6x} \end{bmatrix}$.
- (c) Note that $\Phi(0) = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix}$, so that $\Phi(0)^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}$. It follows that

$$e^{Mx} = \Phi(x)\Phi(0)^{-1} = \begin{bmatrix} -2e^{6x} & -(2x+1)e^{6x} \\ e^{6x} & xe^{6x} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} (2x+1)e^{6x} & 4xe^{6x} \\ -xe^{6x} & -(2x-1)e^{6x} \end{bmatrix}$$

(d) The solution to the IVP is $\boldsymbol{y}(x) = e^{Mx} \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} (2x+1)e^{6x} & 4xe^{6x}\\ -xe^{6x} & -(2x-1)e^{6x} \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} (2x+1)e^{6x}\\ -xe^{6x} \end{bmatrix}$.

Armin Straub straub@southalabama.edu