Notes for Lecture 11 Wed, 2/12/2025
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Example 71. Suppose that eM*=_—| ¢+
P pp 10| 3e™ — 327 Qe 4 27

(a) Without doing any computations, determine M ™.
(b) What is M?
(c) Without doing any computations, determine the eigenvalues and eigenvectors of M.

(d) From those, write down a simple fundamental matrix solution to y'= My.

Mz

(e) From that fundamental matrix solution, how can we compute e (If we didn’t know it already. )

(f) Having computed e®, what is a simple check that we can (should!) make?
Solution.

(a) Since e® and e2® correspond to eigenvalues 1 and 2, we just need to replace these by 17 =1 and 2™:

1[1+9-2" 3-3.27
n_—_—_
M"=16] 3-3.2n 942" ]

(b) We can simply set n =1 in our formula for M", to get M:%{ igg Il?’ ]

M 23:)'

% contains the exponentials e® and e
Mx

(c) The eigenvalues are 1 and 2 (because e

xT

Looking at the coefficients of e” in the first column of e™*, we see that [ :1)) ] is a l-eigenvector.

[We can also look the second column of eM*, to obtain

g ] which is a multiple and thus equivalent.]

Likewise, by looking at the coefficients of e2%, we see that [ _93 ] or, equivalently, [ _13 } is a 2-eigenvector.

Comment. To see where this is coming from, keep in mind that, associated to a \-eigenvector v, we
have the corresponding solution y(z) = ve*® of the DE y’ = My. On the other hand, the columns of
eM2 are solutions to that DE and, therefore, must be linear combinations of these ve?.

1
3
general solutions consists of the linear combinations of these two).

(d) From the eigenvalues and eigenvectors, we know that [ ]eT’ and [ 713 ]eQT’ are solutions (and that the

e  _3e2

Selecting these as the columns, we obtain the fundamental matrix solution ®(z) :{ 3or o2

Comment. The fundamental refers to the fact that the columns combine to the general solution.

The matrix solution means that ®(z) itself satisfies the DE: namely, we have ®’ = M ®. That this is the
case is a consequence of matrix multiplication (namely, say, the second column of M ® is defined to be
M times the second column of ®; but that column is a vector solution and therefore solves the DE).

(e) We can compute eM?® as eM* = o (2)P(0) 1.

z  _3p2% — — 1
If () :{ o :’; ] then ©(0) :[ ; 13 } and, hence, ®(0) ! :ﬁ{ 713 ‘? ] It follows that

Mo 1| e® =3e*® |1[ 1 3]_ 1
eV = (z)2(0) {Bew o2 10l =3 1| 10

e” 4+ 9e2T  3eT — 327
3e® — 32T QeT 4 27

(f) We can check that eM® equals the identity matrix if we set 2 = 0:

L
10

e’ 4+9e** 3e” —3e** | =0 1[1+9 3-3]_[10
3e” —3e3T  9e® 4 27 10/ 3-3 9+1] |01

This check does not require much effort and can even be done in our head while writing down e™*. There
is really no excuse for not doing it!

Armin Straub 30
straub@southalabama.edu



| Another perspective on the matrix exponential |

Review. We achieved the milestone to introduce a matrix exponential in such a way that we
can treat a system of DEs, say y' = My with y(0) = ¢, just as if the matrix M was a number:
namely, the unique solution is simply 1y =e™“c.

The price to pay is that the matrix eM? requires some work to actually compute (and proceeds by first determining
a different matrix solution ®(x) using eigenvectors and eigenvalues). We offer below another way to think about
eM® (using Taylor series).

(exponential function) e” is the unique solution to ¥’ =y, y(0) =1.

From here, it follows that e* =1 +x+z—?+§—?+

The latter is the Taylor series for e at =0 that we have seen in Calculus II.

Important note. We can actually construct this infinite sum directly from y’ =1y and y(0) =1.
d 333

1132
"dz 317 2

Indeed, observe how each term, when differentiated, produces the term before it. For instance

Review. We defined the matrix exponential ¢/*

y' =My, y(0)=1I.

We next observe that we can also make sense of the matrix exponential e as a power series.

as the unique matrix solution to the IVP

Theorem 72. Let M be n x n. Then the matrix exponential satisfies

eM:I+M+%M2+%M3+...

Proof. Define ®(z) :I—i—Mx—i—%MQ:cQ—i—%M%cg—i—

d 1 1
®'(z) =4 I+Mx+§M2m2+§M3x3+...
— 2 1 3.2 —
=04 M+ M2z + 52 M%22 + ... = MO (x).

Clearly, ®(0) = I. Therefore, ®(x) is the fundamental matrix solution to y’' = My, y(0) =1.

But that’s precisely how we defined eM* earlier. It follows that ®(x) =e®. Now set z=1. O

Example 73. If A=2 0], then Alooz{ 2y st }

Example 74. If A= 2 0], then et=[ ] +[2 0]+ 5] % 4]+ =[5 L]

Clearly, this works to obtain e for every diagonal matrix D.

- _[22 0] Az_[1 0 2z 0 | 1) (22)2 o0 o= | €0
In partlcular,forAx—{Ofc Sx},e x—{o 1}—1—{5%}%-2!{ g (533)2}%- —{60 5%

The following is a preview of how the matrix exponential deals with repeated characteristic roots.

Example 75. Determine e1% for A= { 8 é }

Solution. If we compute eigenvalues, we find that we get A\ = 0, 0 (multiplicity 2) but there is only one 0-
eigenvector (up to multiples). This means we are stuck with this approach—however, see next extra section how
we could still proceed.

: 2_[o0o0 Az _ _[10 0oz]_[1 =
The key here is to observe that A —{0 0]. It follows that e x—I—l—Aa:—[O 1]—1—{0 0]—[0 1].
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\ Extra: The case of repeated eigenvalues with too few eigenvectors

Review. To construct a fundamental matrix solution ®(x) to y’ = My, we compute eigenvectors:

Given a \-eigenvector v, we have the corresponding solution y(z) = ve’”.

If there are enough eigenvectors, we can collect these as columns to obtain ®(z).
The next example illustrates how to proceed if there are not enough eigenvectors.

In that case, instead of looking only for solutions of the type y(z) = ve*® | we also need to look for solutions

of the type y(z) = (vz + w)e*. This can only happen if an eigenvalue is a repeated root of the characteristic
polynomial.

Example 76. Let M:{ _81 i }

(a) Determine the general solution to y’ = My.
(b) Determine a fundamental matrix solution to y' = Muy.
(c) Compute M.

(d) Solve the initial value problem y’= My with y(0) = { (1) }

Solution.

(a) We determine the eigenvectors of M. The characteristic polynomial is:
det(M — A1) :detq RN D — (8= N)(4—X\)+4=X2— 12X+ 36= (A —6)(\ —6)

Hence, the eigenvalues are A =6, 6 (meaning that 6 has multiplicity 2).
e To find eigenvectors v for A =6, we need to solve [ 31 :12 ]'v =0.

Hence, 'v:[ 712 ] is an eigenvector for A =6. There is no independent second eigenvector.

e We therefore search for a solution of the form y(z) = (vz + w)e * with A =6.
!
Yy (z) = vz + dw + v)e ™ = My = (Mvz + Mw)e*®
Equating coefficients of =, we need A\v = Mwv and Aw + v = Mw.

Hence, v must be an eigenvector (which we already computed); we choose v :[ 712 ]

[Note that any multiple of y(x) will be another solution, so it doesn't matter which multiple of { 712 } we choose.]

Aw 4+ v = Mw or (M — \)w = v then becomes [ 31 fz ]'w:[ 712 ]

One solution is w :[ Bl ] [We only need one.]

Hence, the general solution is Cl{ 712 ]669” + Cg([ 712 ]x—l—{ Bl Dee’x.

- . . . _ 96z _ 6
(b) The corresponding fundamental matrix solution is ® :{ jff” (22;})6 }

(c) Note that @(0):{ —2 *01 ] so that @(0)—1:{ ,O

1
| T ] It follows that

1

Mz _ -1_
eV =2(z)P(0)"" = b 267 -1 —2

¢ _(2x+1)e6wM 0 1 }:

(2x + 1)eb 43 e85
—xeb  —(2x —1)eb

(d) The solution to the IVP is y(z) :eMm[ ! ]:[ (2z+1)es*  dzedr M ! ]:[ (22 +1)et }

—xebT —(2z — 1) eb® —xeb®
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