Solving systems of recurrence equations

The following summarizes how we can solve systems of recurrence equations using eigenvectors. As a bonus, we obtain a way to compute matrix powers.

Each step is spelled out in Example 60 below.

(solving systems of REs) To solve $a_{n+1} = Ma_n$, determine the eigenvectors of M.

- Each λ -eigenvector v provides a solution: $a_n = v\lambda^n$ [assuming that $\lambda \neq 0$]
- If there are enough eigenvectors, these combine to the general solution.

In that case, we get a **fundamental matrix (solution)** Φ_n by placing each solution vector into one column of Φ_n .

• If desired, we can compute the **matrix powers** M^n using any fundamental matrix Φ_n as

$$M^n = \Phi_n \Phi_0^{-1}.$$

Note that M^n is the unique matrix solution to $a_{n+1} = Ma_n$ with $a_0 = I$ (the identity matrix). Application: the unique solution to $a_{n+1} = Ma_n$, $a_0 = c$ is given by $a_n = M^n c$.

Why? If $a_n = v\lambda^n$ for a λ -eigenvector v, then $a_{n+1} = v\lambda^{n+1}$ and $Ma_n = Mv\lambda^n = \lambda v \cdot \lambda^n = v\lambda^{n+1}$.

Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the form cr^n where $r \neq 0$ is a root of the characteristic polynomials. To solve $a_{n+1} = Ma_n$, it is therefore natural to look for solutions of the form $a_n = cr^n$ (where $c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$). Note that $a_{n+1} = cr^{n+1} = ra_n$.

Plugging into $a_{n+1} = Ma_n$ we find $cr^{n+1} = Mcr^n$.

Cancelling r^n (just a nonzero number!), this simplifies to rc = Mc.

In other words, $a_n = cr^n$ is a solution if and only if c is an r-eigenvector of M.

Not enough eigenvectors? In that case, we know what to do as well (at least in principle): instead of looking only for solutions of the type $a_n = v\lambda^n$, we also need to look for solutions of the type $a_n = (vn + w)\lambda^n$. Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Matrix solutions. A matrix Φ_n is a matrix solution to $a_{n+1} = Ma_n$ if $\Phi_{n+1} = M\Phi_n$. Φ_n being a matrix solution is equivalent to each column of Φ_n being a normal (vector) solution. If the general solution of $a_{n+1} = Ma_n$ can be obtained as the linear combination of the columns of Φ_n , then Φ_n is a fundamental matrix solution.

Why can we compute matrix powers this way? Recall that, given a first-order system $a_{n+1} = Ma_n$, it is clear that the solution satisfies $a_n = M^n a_0$. Likewise, a fundamental matrix solution Φ_n to the same recurrence satisfies $\Phi_n = M^n \Phi_0$. Multiplying both sides by Φ_0^{-1} (on the right!) we conclude that $\Phi_n \Phi_0^{-1} = M^n$.

Already know how to compute matrix powers? If you have taken linear algebra classes, you may have learned that matrix powers M^n can be computed by diagonalizing the matrix M. The latter hinges on computing eigenvalues and eigenvectors of M as well. Compare the two approaches!

Example 60. Let $M = \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix}$.

- (a) Determine the general solution to $a_{n+1} = Ma_n$.
- (b) Determine a fundamental matrix solution to $a_{n+1} = Ma_n$.
- (c) Compute M^n .
- (d) Solve $\boldsymbol{a}_{n+1} = M\boldsymbol{a}_n$, $\boldsymbol{a}_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Solution.

- (a) Recall that each λ -eigenvector \boldsymbol{v} of M provides us with a solution: $\boldsymbol{a}_n = \boldsymbol{v}\lambda^n$ We computed in Example 54 that $\begin{bmatrix} 2\\1 \end{bmatrix}$ is an eigenvector for $\lambda = 3$, and $\begin{bmatrix} 1\\1 \end{bmatrix}$ is an eigenvector for $\lambda = -2$. Hence, the general solution is $C_1 \begin{bmatrix} 2\\1 \end{bmatrix} 3^n + C_2 \begin{bmatrix} 1\\1 \end{bmatrix} (-2)^n$.
- (b) Note that we can write the general solution as

$$\begin{split} & \boldsymbol{a}_n = C_1 \begin{bmatrix} 2\\1 \end{bmatrix} 3^n + C_2 \begin{bmatrix} 1\\1 \end{bmatrix} (-2)^n = \begin{bmatrix} 2 \cdot 3^n & (-2)^n\\3^n & (-2)^n \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix}. \\ & \text{We call } \Phi_n = \begin{bmatrix} 2 \cdot 3^n & (-2)^n\\3^n & (-2)^n \end{bmatrix} \text{ the corresponding fundamental matrix (solution)}. \\ & \text{Note that our general solution is precisely } \Phi_n \boldsymbol{c} \text{ with } \boldsymbol{c} = \begin{bmatrix} C_1\\C_2 \end{bmatrix}. \\ & \text{Observations.} \end{split}$$

- (a) The columns of Φ_n are (independent) solutions of the system.
- (b) Φ_n solves the RE itself: $\Phi_{n+1} = M \Phi_n$. [Spell this out in this example! That Φ_n solves the RE follows from the definition of matrix multiplication.]
- (c) It follows that $\Phi_n = M^n \Phi_0$. Equivalently, $\Phi_n \Phi_0^{-1} = M^n$. (See next part!)
- (c) Note that $\Phi_0 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, so that $\Phi_0^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$. It follows that

$$M^{n} = \Phi_{n} \Phi_{0}^{-1} = \begin{bmatrix} 2 \cdot 3^{n} & (-2)^{n} \\ 3^{n} & (-2)^{n} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot 3^{n} - (-2)^{n} & -2 \cdot 3^{n} + 2(-2)^{n} \\ 3^{n} - (-2)^{n} & -3^{n} + 2(-2)^{n} \end{bmatrix}.$$

Check. Let us verify the formula for M^n in the cases n = 0 and n = 1:

$$M^{0} = \begin{bmatrix} 2-1 & -2+2 \\ 1-1 & -1+2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$M^{1} = \begin{bmatrix} 2\cdot3-(-2) & -2\cdot3+2(-2) \\ 3-(-2) & -3+2(-2) \end{bmatrix} = \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix}$$
(d) $\boldsymbol{a}_{n} = M^{n}\boldsymbol{a}_{0} = \begin{bmatrix} 2\cdot3^{n}-(-2)^{n} & -2\cdot3^{n}+2(-2)^{n} \\ 3^{n}-(-2)^{n} & -3^{n}+2(-2)^{n} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -2\cdot3^{n}+3(-2)^{n} \\ -3^{n}+3(-2)^{n} \end{bmatrix}$

Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[8,-10],[5,-7]])

>>> M^2

 $\left(\begin{array}{rr} 14 & -10 \\ 5 & -1 \end{array}\right)$

Verify that this matrix matches what our formula for M^n produces for n=2. In order to reproduce the general formula for M^n , we need to first define n as a symbolic variable:

>>> n = var('n')
>>> M^n

$$\begin{pmatrix} 2 \cdot 3^n - (-2)^n & -2 \cdot 3^n + 2 & (-2)^n \\ 3^n - (-2)^n & -3^n + 2 & (-2)^n \end{pmatrix}$$

Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and eigenvectors of M from this formula for M^n ? Of course, Sage can readily compute these for us directly using, for instance, M.eigenvectors_right(). Try it! Can you interpret the output?

Example 61. (review) Write the (second-order) RE $a_{n+2} = a_{n+1} + 2a_n$, with $a_0 = 0$, $a_1 = 1$, as a system of (first-order) recurrences.

Solution. If $a_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$, then $a_{n+1} = \begin{bmatrix} a_{n+1} \\ a_{n+2} \end{bmatrix} = \begin{bmatrix} a_{n+1} \\ a_{n+1} + 2a_n \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} a_n$ with $a_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Example 62. Let $M = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix}$.

- (a) Determine the general solution to $a_{n+1} = Ma_n$.
- (b) Determine a fundamental matrix solution to $a_{n+1} = Ma_n$.
- (c) Compute M^n .

(d) Solve
$$\boldsymbol{a}_{n+1} = M \boldsymbol{a}_n$$
, $\boldsymbol{a}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Solution.

- (a) Recall that each λ -eigenvector \boldsymbol{v} of M provides us with a solution: namely, $\boldsymbol{a}_n = \boldsymbol{v}\lambda^n$. The characteristic polynomial is: $\det(A - \lambda I) = \det\left(\begin{bmatrix} -\lambda & 1\\ 2 & 1-\lambda \end{bmatrix}\right) = \lambda^2 - \lambda - 2 = (\lambda - 2)(\lambda + 1)$. Hence, the eigenvalues are $\lambda = 2$ and $\lambda = -1$.
 - $\lambda = 2$: Solving $\begin{bmatrix} -2 & 1 \\ 2 & -1 \end{bmatrix} \boldsymbol{v} = \boldsymbol{0}$, we find that $\boldsymbol{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is an eigenvector for $\lambda = 2$.
 - $\lambda = -1$: Solving $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \boldsymbol{v} = \boldsymbol{0}$, we find that $\boldsymbol{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = -1$.

Hence, the general solution is $C_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} 2^n + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} (-1)^n$.

(b) Note that $C_1 \begin{bmatrix} 1\\2 \end{bmatrix} 2^n + C_2 \begin{bmatrix} -1\\1 \end{bmatrix} (-1)^n = \begin{bmatrix} 2^n & -(-1)^n\\2 \cdot 2^n & (-1)^n \end{bmatrix} \begin{bmatrix} C_1\\C_2 \end{bmatrix}$. Hence, a fundamental matrix solution is $\Phi_n = \begin{bmatrix} 2^n & -(-1)^n\\2 \cdot 2^n & (-1)^n \end{bmatrix}$.

Comment. Other choices are possible and natural. For instance, the order of the two columns is based on our choice of starting with $\lambda = 2$. Also, the columns can be scaled by any constant (for instance, using -v instead of v for $\lambda = -1$ above, we end up with the same Φ_n but with the second column scaled by -1). In general, if Φ_n is a fundamental matrix solution, then so is $\Phi_n C$ where C is an invertible 2×2 matrix.

(c) We compute $M^n = \Phi_n \Phi_0^{-1}$ using $\Phi_n = \begin{bmatrix} 2^n & -(-1)^n \\ 2 \cdot 2^n & (-1)^n \end{bmatrix}$. Since $\Phi_0^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$, we have $M^n = \Phi_n \Phi_0^{-1} = \begin{bmatrix} 2^n & -(-1)^n \\ 2 \cdot 2^n & (-1)^n \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2^n + 2(-1)^n & 2^n - (-1)^n \\ 2 \cdot 2^n - 2(-1)^n & 2 \cdot 2^n + (-1)^n \end{bmatrix}$. (d) $a_n = M^n a_0 = \frac{1}{3} \begin{bmatrix} 2^n + 2(-1)^n & 2^n - (-1)^n \\ 2 \cdot 2^n - 2(-1)^n & 2 \cdot 2^n + (-1)^n \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2^n - (-1)^n \\ 2 \cdot 2^n - 2(-1)^n \end{bmatrix}$

Alternative solution of the first part. We saw in Example 61 that this system can be obtained from $a_{n+2} = a_{n+1} + 2a_n$ if we set $\boldsymbol{a} = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$. In Example 46, we found that this RE has solutions $a_n = 2^n$ and $a_n = (-1)^n$. Correspondingly, $\boldsymbol{a}_{n+1} = \begin{bmatrix} 0 & 1 \\ 2 & 1 \end{bmatrix} \boldsymbol{a}_n$ has solutions $\boldsymbol{a}_n = \begin{bmatrix} 2^n \\ 2^{n+1} \end{bmatrix}$ and $\boldsymbol{a}_n = \begin{bmatrix} (-1)^n \\ (-1)^{n+1} \end{bmatrix}$. These combine to the general solution $C_1 \begin{bmatrix} 2^n \\ 2^{n+1} \end{bmatrix} + C_2 \begin{bmatrix} (-1)^n \\ (-1)^{n+1} \end{bmatrix}$ (equivalent to our solution above). Alternative for last part. Solve the RE from Example 61 to find $a_n = \frac{1}{3}(2^n - (-1)^n)$. The above is $\boldsymbol{a}_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$.