Notes for Lecture 9 Fri, 2/7/2025

\ Solving systems of recurrence equations

The following summarizes how we can solve systems of recurrence equations using eigenvectors.
As a bonus, we obtain a way to compute matrix powers.

Each step is spelled out in Example 60 below.

(solving systems of REs) To solve a,,+1 = Ma,,, determine the eigenvectors of M.
e Each \-eigenvector v provides a solution: a,, = v\" [assuming that A 2 0]

e If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) ®,, by placing each solution
vector into one column of ®,,.

e If desired, we can compute the matrix powers M " using any fundamental matrix ®,, as
M"=0,8;".

Note that M™ is the unique matrix solution to a,4+1= Ma, with ag =1 (the identity matrix).

Application: the unique solution to a,, 1= Ma,, ag=c is given by a,,= M"c.

Why? If a,,=v\" for a A-eigenvector v, then a,, 1= A" and Ma,, = Mo\ = v - \* =oAL
Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the
form cr™ where 1 #0 is a root of the characteristic polynomials. To solve a,, 1 = M ay, it is therefore natural
to look for solutions of the form a,, = ¢r™ (where c:[ ;: }) Note that a, 11 =cr"t!=ra,,.

Plugging into a,,+1 = Ma,, we find cr"tl = Merm.

Cancelling "™ (just a nonzero number!), this simplifies to rc = Me.

In other words, a,, = cr™ is a solution if and only if ¢ is an r-eigenvector of M.

Not enough eigenvectors? In that case, we know what to do as well (at least in principle): instead of looking
only for solutions of the type a,, = v\", we also need to look for solutions of the type a, = (vn + w)\™. Note
that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Matrix solutions. A matrix ®,, is a matrix solution to a,, 1 = Ma,, if ®,,41 =M P,,. P,, being a matrix solution
is equivalent to each column of ®,, being a normal (vector) solution. If the general solution of a, 1 = Ma,
can be obtained as the linear combination of the columns of ®,,, then ®,, is a fundamental matrix solution.

Why can we compute matrix powers this way? Recall that, given a first-order system a,+1 = Ma,, it is
clear that the solution satisfies a,, = M "a. Likewise, a fundamental matrix solution ®,, to the same recurrence
satisfies ®,, = M "®qy. Multiplying both sides by <I>0_1 (on the right!) we conclude that Canbo_l =M.

Already know how to compute matrix powers? If you have taken linear algebra classes, you may have learned
that matrix powers M™ can be computed by diagonalizing the matrix M. The latter hinges on computing
eigenvalues and eigenvectors of M as well. Compare the two approaches!

Example 60. Let M = { 2 __170 }

(a) Determine the general solution to a,, 1= Ma,,.
(b) Determine a fundamental matrix solution to a, 1= Ma,,.
(c) Compute M™.

(d) Solve a,+1=Ma,, aoz{ ; }
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Solution.

(a) Recall that each A-eigenvector v of M provides us with a solution: a,, = vA™

We computed in Example 54 that [ f } is an eigenvector for A= 3, and [ } ] is an eigenvector for A = —2.
Hence, the general solution is Cl[ f ]3” + Cg{ 1 ](—2)”.

(b) Note that we can write the general solution as

an=ci[2 e Hom=[ 28 ]

We call @n:{ 2:',)5’“ E:;g: } the corresponding fundamental matrix (solution).
Note that our general solution is precisely ®,,c with c:[ gl }
2

Observations.
(a) The columns of ®,, are (independent) solutions of the system.

(b) @, solves the RE itself: ®,, 41 =MP,.

[Spell this out in this example! That ®,, solves the RE follows from the definition of matrix
multiplication.]

(c) It follows that ®,, = M"™®q. Equivalently, cI)ncpo_l = M". (See next part!)

(c) Note that CIDO:{ i } }, so that <I>0_1 :{ jl ;1 ] It follows that

M”:cpncpolz[zz”" (—2)”“ 1 —1]:{2-3”—(—2)71 —2.3n42(—2)n

3n (=2)" || -1 2 3m—(=2)"  —3n42(=2)"

Check. Let us verify the formula for M™ in the cases n =0 and n = 1:
MO:[ 2—-1 —2+2 }:{ 1 0}

1—1 —1+42 01
1_[2:3—(—2) —2-342(-2)]_[8 —10
M _[ 3—(-2) —-3+2(-2) ]_[5 -7 ]

(@) an=Mrao=[ 2,27 GR 2R [} |=[ ZRG

Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[8,-10],[5,-7]1]1)

>>> M~2

14 —10
5 —1
Verify that this matrix matches what our formula for M™ produces for n =2. In order to reproduce the general
formula for M™, we need to first define n as a symbolic variable:
>>> n = var(’n’)
>>> M™n
23" —(=2)" —=2.3"+2 (—2)"
3 —(=2)" =342 (=2)"

Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and
eigenvectors of M from this formula for M™? Of course, Sage can readily compute these for us directly using,
for instance, M.eigenvectors_right (). Try it! Can you interpret the output?
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Example 61. (review) Write the (second-order) RE a,,+9=a, 41+ 2a,, with ag=0, a1 =1, as
a system of (first-order) recurrences.

an
an+1

Qp 41
An+2

, then an 1= =

Solution. If a, = ]an with aoz{ (1) ]

— =

Ap g1 _ 0
any1+2a, 2

Example 62. Let M = { g 1 }

(a) Determine the general solution to a,,+1 = Ma,,.
(b) Determine a fundamental matrix solution to a,,+1 = Ma,,.
(c) Compute M™.

(d) Solve a,+1=Ma,, Cl,():{ (1) }

Solution.
(a) Recall that each A-eigenvector v of M provides us with a solution: namely, a, = vA™.

The characteristic polynomial is: det(A — \I) = det([ _2>‘ L * N D =X - A—-2=(A—-2)(A+1).

Hence, the eigenvalues are A=2 and A = —1.

e A =2: Solving { _22 _11 ]fu:O, we find that v:{ ; ] is an eigenvector for A =2.

e A= —1: Solving { ; ; ]’U:O, we find that 'v:[ _11 ] is an eigenvector for A= —1.

Hence, the general solution is Cl[ ; ]2"—1—02{ _11 ](—1)”.

1 -1 2n (=" ][ C
(b) Note that cl[ ! }2n+02[ ] ](_m :[ 2% TR H o ]
Hence, a fundamental matrix solution is @n:{ 2?;”, 7((:1?,” }
Comment. Other choices are possible and natural. For instance, the order of the two columns is based
on our choice of starting with A=2. Also, the columns can be scaled by any constant (for instance, using
—v instead of v for \=—1 above, we end up with the same ®,, but with the second column scaled by —1).

In general, if ®,, is a fundamental matrix solution, then so is ®,,C where C' is an invertible 2 X 2 matrix.

n n -1
(c) We compute M”:@ncbo_l using @n:[ 2?27} 7((:11)2, ] Since <I>0_1:[ ; 711 ] :%{ 712 i ], we have

M"=®,0; "' =

[ 2" —(—1)”];{ 1 H:l[ 27 4 2(—1)" 27— (—=1)" }

2.2 (=)™ —2 3 2-27—2(=1)" 2.2"4 (1)

P P NS S RS

Alternative solution of the first part. We saw in Example 61 that this system can be obtained from a,, 42 =
an+1-+2ay, if we set a:{ aa" ] In Example 46, we found that this RE has solutions a,, =2" and a,, = (—1)".
n+1

Correspondingly, a, 1 :[ (2) 1 ]a,n has solutions an:{ 23:1 } and an:{ ((__1)1211 }

These combine to the general solution Cl{ 23; } + C’z{ ((__)12;1 } (equivalent to our solution above).

Alternative for last part. Solve the RE from Example 61 to find an:%(Q" —(=1)™). The above is an:[ an ]

QAn 41
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