
Notes for Lecture 9 Fri, 2/7/2025

Solving systems of recurrence equations

The following summarizes how we can solve systems of recurrence equations using eigenvectors.
As a bonus, we obtain a way to compute matrix powers.
Each step is spelled out in Example 60 below.

(solving systems of REs) To solve an+1=Man, determine the eigenvectors of M .

� Each �-eigenvector v provides a solution: an=v�n [assuming that �=/ 0]

� If there are enough eigenvectors, these combine to the general solution.

In that case, we get a fundamental matrix (solution) �n by placing each solution
vector into one column of �n.

� If desired, we can compute the matrix powersMn using any fundamental matrix �n as

Mn=�n�0
¡1:

Note that Mn is the unique matrix solution to an+1=Man with a0= I (the identity matrix).

Application: the unique solution to an+1=Man, a0= c is given by an=Mnc.

Why? If an=v�n for a �-eigenvector v, then an+1=v�n+1 and Man=Mv�n=�v ��n=v�n+1.
Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the
form crn where r=/ 0 is a root of the characteristic polynomials. To solve an+1=Man, it is therefore natural
to look for solutions of the form an=cr

n (where c=
�
c1
c2

�
). Note that an+1= crn+1= ran.

Plugging into an+1=Man we find crn+1=Mcrn.
Cancelling rn (just a nonzero number!), this simplifies to rc=Mc.
In other words, an=crn is a solution if and only if c is an r-eigenvector of M .

Not enough eigenvectors? In that case, we know what to do as well (at least in principle): instead of looking
only for solutions of the type an=v�n, we also need to look for solutions of the type an=(vn+w)�n. Note
that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial.

Matrix solutions. Amatrix�n is amatrix solution toan+1=Man if�n+1=M�n. �n being a matrix solution
is equivalent to each column of �n being a normal (vector) solution. If the general solution of an+1 =Man
can be obtained as the linear combination of the columns of �n, then �n is a fundamental matrix solution.

Why can we compute matrix powers this way? Recall that, given a first-order system an+1 =Man, it is
clear that the solution satisfies an=Mna0. Likewise, a fundamental matrix solution �n to the same recurrence
satisfies �n=Mn�0. Multiplying both sides by �0

¡1 (on the right!) we conclude that �n�0
¡1=Mn.

Already know how to compute matrix powers? If you have taken linear algebra classes, you may have learned
that matrix powers Mn can be computed by diagonalizing the matrix M . The latter hinges on computing
eigenvalues and eigenvectors of M as well. Compare the two approaches!

Example 60. Let M =
�
8 ¡10
5 ¡7

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Solve an+1=Man, a0=
�
1
2

�
.
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Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: an=v�n

We computed in Example 54 that
�
2
1

�
is an eigenvector for �=3, and

�
1
1

�
is an eigenvector for �=¡2.

Hence, the general solution is C1
�
2
1

�
3n+C2

�
1
1

�
(¡2)n.

(b) Note that we can write the general solution as

an=C1
�
2
1

�
3n+C2

�
1
1

�
(¡2)n=

�
2 � 3n (¡2)n
3n (¡2)n

��
C1

C2

�
.

We call �n=
�
2 � 3n (¡2)n
3n (¡2)n

�
the corresponding fundamental matrix (solution).

Note that our general solution is precisely �nc with c=
�
C1

C2

�
.

Observations.

(a) The columns of �n are (independent) solutions of the system.

(b) �n solves the RE itself: �n+1=M�n.
[Spell this out in this example! That �n solves the RE follows from the definition of matrix
multiplication.]

(c) It follows that �n=Mn�0. Equivalently, �n�0
¡1=Mn. (See next part!)

(c) Note that �0=
�
2 1
1 1

�
, so that �0

¡1=
�

1 ¡1
¡1 2

�
. It follows that

Mn=�n�0
¡1=

�
2 � 3n (¡2)n
3n (¡2)n

��
1 ¡1
¡1 2

�
=

�
2 � 3n¡ (¡2)n ¡2 � 3n+2(¡2)n
3n¡ (¡2)n ¡3n+2(¡2)n

�
:

Check. Let us verify the formula for Mn in the cases n=0 and n=1:

M0=
�
2¡ 1 ¡2+2
1¡ 1 ¡1+2

�
=
�
1 0
0 1

�
M1=

�
2 � 3¡ (¡2) ¡2 � 3+2(¡2)
3¡ (¡2) ¡3+ 2(¡2)

�
=
�
8 ¡10
5 ¡7

�

(d) an=Mna0=
�
2 � 3n¡ (¡2)n ¡2 � 3n+2(¡2)n
3n¡ (¡2)n ¡3n+2(¡2)n

��
1
2

�
=
�
¡2 � 3n+3(¡2)n
¡3n+3(¡2)n

�
Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[8,-10],[5,-7]])

>>> M^2�
14 ¡10
5 ¡1

�
Verify that this matrix matches what our formula for Mn produces for n=2. In order to reproduce the general
formula for Mn, we need to first define n as a symbolic variable:

>>> n = var('n')

>>> M^n�
2 � 3n¡ (¡2)n ¡2 � 3n+2 (¡2)n
3n¡ (¡2)n ¡3n+2 (¡2)n

�
Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and
eigenvectors of M from this formula for Mn? Of course, Sage can readily compute these for us directly using,
for instance, M.eigenvectors_right(). Try it! Can you interpret the output?
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Example 61. (review) Write the (second-order) RE an+2=an+1+2an, with a0=0, a1=1, as
a system of (first-order) recurrences.

Solution. If an=
�

an
an+1

�
, then an+1=

�
an+1
an+2

�
=
�

an+1
an+1+2an

�
=
�
0 1
2 1

�
an with a0=

�
0
1

�
.

Example 62. Let M =
�
0 1
2 1

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Solve an+1=Man, a0=
�
0
1

�
.

Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: namely, an=v�n.

The characteristic polynomial is: det(A¡�I)=det
��
¡� 1
2 1¡�

��
=�2¡�¡ 2= (�¡ 2)(�+1).

Hence, the eigenvalues are �=2 and �=¡1.

� �=2: Solving
�
¡2 1
2 ¡1

�
v=0, we find that v=

�
1
2

�
is an eigenvector for �=2.

� �=¡1: Solving
�
1 1
2 2

�
v=0, we find that v=

�
¡1
1

�
is an eigenvector for �=¡1.

Hence, the general solution is C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n.

(b) Note that C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

��
C1

C2

�
.

Hence, a fundamental matrix solution is �n=
�

2n ¡(¡1)n
2 � 2n (¡1)n

�
.

Comment. Other choices are possible and natural. For instance, the order of the two columns is based
on our choice of starting with �=2. Also, the columns can be scaled by any constant (for instance, using
¡v instead of v for �=¡1 above, we end up with the same�n but with the second column scaled by¡1).
In general, if �n is a fundamental matrix solution, then so is �nC where C is an invertible 2� 2 matrix.

(c) We computeMn=�n�0
¡1 using �n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
. Since �0

¡1=
�
1 ¡1
2 1

�¡1
=
1

3

�
1 1
¡2 1

�
, we have

Mn=�n�0
¡1=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
1
3

�
1 1
¡2 1

�
=
1
3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

�
:

(d) an=Mna0=
1

3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

��
0
1

�
=
1

3

�
2n¡ (¡1)n
2 � 2n+(¡1)n

�

Alternative solution of the first part. We saw in Example 61 that this system can be obtained from an+2=

an+1+2an if we set a=
�

an
an+1

�
. In Example 46, we found that this RE has solutions an=2n and an=(¡1)n.

Correspondingly, an+1=
�
0 1
2 1

�
an has solutions an=

"
2n

2n+1

#
and an=

"
(¡1)n
(¡1)n+1

#
.

These combine to the general solution C1
"

2n

2n+1

#
+C2

"
(¡1)n
(¡1)n+1

#
(equivalent to our solution above).

Alternative for last part. Solve the RE from Example 61 to find an=
1

3
(2n¡(¡1)n). The above is an=

�
an
an+1

�
.
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