A crash course in linear algebra

Example 1. A typical 2×3 matrix is $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. . It is composed of column vectors like $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and row vectors and row vectors like $[\begin{array}{ccc} 1 & 2 & 3 \end{array}].$ Matrices (and vectors) of the same dimensions can be added and multiplied by a scalar: For instance, $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 2 \\ 2 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 5 \\ 6 & 8 & 5 \end{bmatrix}$ or $2 \quad 3 \quad -1 \quad \end{bmatrix}$ $\begin{bmatrix} 6 & 8 & 5 \end{bmatrix}$ or $\begin{bmatrix} 2 & 2 & 5 \\ 6 & 8 & 5 \end{bmatrix}$ or $3 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 5 \\ 6 & 8 & 5 \end{bmatrix}$ or $3 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{bmatrix}$. 12 15 18 \mathbf{I} and \mathbf{I} and \mathbf{I} and \mathbf{I} .

Remark. More generally, a vector space is an abstraction of a collection of objects that can be added and scaled: numbers, lists of numbers (like the above row and column vectors), arrays of numbers (like the above matrices), arrows, functions, polynomials, differential operators, solutions to homogeneous linear differential equations, *:::*

Example 2. The **transpose** A^T of A is obtained by interchanging roles of rows and columns.

For instance. $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 2 & 6 \end{bmatrix}$ 4 1 4 2 5 $\begin{bmatrix} 2 & 5 \\ 3 & 6 \end{bmatrix}$ $\overline{3}$

Example 3. Matrices of appropriate dimensions can also be **multiplied**.

This is based on the multiplication $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix} = ax + by + cz$ of \boldsymbol{x} $y \mid = ax + by + cz$ $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = ax + by + cz$ of row a $= a x + b y + c z$ of row and column vectors. **For instance.** $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 4 & - \end{bmatrix}$ 4 $1 \quad 0 \quad \uparrow$ $\qquad \qquad$ $1 \quad$ $-1 \quad 1 \quad | = | \frac{7}{7} \quad | \frac{6}{7} |$ 2 -2 $\left[\begin{array}{ccc} 2 & -2 \end{array}\right]$ 3 $=\begin{bmatrix} 4 & -3 \\ 7 & -5 \end{bmatrix}$ $7 - 5$ \mathbf{I} and \mathbf{I} and \mathbf{I}

In general, we can multiply a $m \times n$ matrix A with a $n \times r$ matrix B to get a $m \times r$ matrix $AB.$

Its entry in row i and column j is defined to be $(AB)_{ij}$ $=$ $(\text{row } i \text{ of } A)\left\lceil \begin{array}{c} \text{column} \ j \end{array} \right\rceil.$ column and the column \vert *j* $\begin{bmatrix} j \\ \text{of } B \end{bmatrix}$. $\overline{3}$

Comment. One way to think about the multiplication *Ax* is that the resulting vector is a linear combination of the columns of *A* with coefficients from *x*. Similarly, we can think of *xTA* as a combination of the rows of *A*.

Some nice properties of matrix multiplication are:

- There is an $n \times n$ identity matrix I (all entries are zero except the diagonal ones which are 1). It satisfies $AI = A$ and $IA = A$.
- The associative law $A(BC) = (AB)C$ holds. Hence, we can write ABC without ambiguity.
- The distributive laws including $A(B+C) = AB + AC$ hold.

Example 4. $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, so we have no commutative law.

Example 5. $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

On the RHS we have the **identity matrix**, usually denoted I or I_2 (since it's the 2×2 identity matrix here).

Hence, the two matrices on the left are inverses of each other: $\begin{bmatrix} 3 & 1 \ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \ -2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & -1 \ -2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1 \ 2 & 2 \end{bmatrix}^{-1}$ $[-2 \ 3 \]' [-2 \ 3]$ $\left[\begin{array}{cc} 1 & -1 \\ -2 & 3 \end{array} \right]^{-1} = \left[\begin{array}{cc} 3 & 1 \\ 2 & 1 \end{array} \right].$ 2 1 $\mathbf{1}$ and $\mathbf{1}$ and $\mathbf{1}$.

The **inverse** A^{-1} of a matrix *A* is characterized by $A^{-1}A = I$ and $AA^{-1} = I$.

Example 6. The following formula immediately gives us the inverse of a 2×2 matrix (if it exists). It is worth remembering!

3 4 || x_2 | -1 | $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Multiplying by $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & 4 \\ 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ produces $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$ $\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ produces $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\left[\begin{array}{c} 4 & -2 \\ -3 & 1 \end{array}\right]$ produces $\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]=-\frac{1}{2}\left[\begin{array}{cc} 4 & -2 \\ -3 & 1 \end{array}\right]\left[\begin{array}{c} 1 \\ -1 \end{array}\right]=-\frac{1}{2}\left[\begin{array}{c} 6 \\ -4 \end{array}\right]$ $\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 6 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -3 & 1 \end{bmatrix}$ $\begin{bmatrix} -1 \end{bmatrix}$ 2 $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 6 \\ -4 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}.$ $2 \begin{array}{|c|c|c|c|c|} \hline 2 & -4 & 2 & \end{array}$ $\begin{bmatrix} 6 \\ -3 \end{bmatrix}$ $\begin{bmatrix} 6 \\ -4 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}.$.

Example 9. (homework) Solve the system $\frac{x_1 + 2x_2}{3x_1 + 4x_2} = \frac{1}{2}$ (using a matrix inverse). $\frac{x_1+zx_2-1}{3x_1+4x_2-2}$ (using a matrix inverse). **Solution.** The equations are equivalent to $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. 3 4 $\mid x_2 \mid$ | 2 | $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$ $2 \mid$ \mathbf{I} and \mathbf{I} and \mathbf{I} and \mathbf{I} . Multiplying by $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & 4 \\ 3 & 4 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ produces $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$ $\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ produces $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$ produces $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 \\ -1 \end{bmatrix} =$ $\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $\begin{bmatrix} -3 & 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$ 2 | -1 $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}.$ $2| -1 | 1/2 |$ $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1/2 \end{bmatrix}.$ $1/2$ \mathbf{I} and \mathbf{I} and \mathbf{I} . Comment. In hindsight, can you see this solution by staring at the equations? Comment. Note how we can reuse the matrix inverse from the previous example.

The **determinant** of A, written as $\det(A)$ or $|A|$, is a number with the property that:

$$
\det(A) \neq 0 \iff A \text{ is invertible}
$$

$$
\iff Ax = b \text{ has a (unique) solution } x \text{ for all } b
$$

$$
\iff Ax = 0 \text{ is only solved by } x = 0
$$

Example 10. $\det \begin{pmatrix} a & b \ c & d \end{pmatrix} = ad-bc$, which appeared in the formula for the inverse.