Good luck!

Problem 1. (6 points) Derive a recursive description of a power series solution $y(x)$ of the $\mathrm{DE} y^{\prime \prime}=\left(3 x^{2}-2\right) y$.

Problem 2. (3 points) Let $y(x)$ be the unique solution to the IVP $y^{\prime \prime}=x+3 y^{2}, y(0)=2, y^{\prime}(0)=1$. Determine the first several terms (up to x^{3}) in the power series of $y(x)$.

Problem 3. (4 points) Consider the function $f(t)=t$, defined for $t \in[0,1]$.
(a) Sketch the Fourier series of $f(t)$ for $t \in[-3,3]$.
(b) Sketch the Fourier cosine series of $f(t)$ for $t \in[-3,3]$.
(c) Sketch the Fourier sine series of $f(t)$ for $t \in[-3,3]$.

In each sketch, carefully mark the values of the Fourier series at discontinuities.

Problem 4. (5 points)
(a) Suppose $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. How can we compute the a_{n} from $y(x)$? $a_{n}=$
(b) Suppose $f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi t}{3}\right)+b_{n} \sin \left(\frac{n \pi t}{3}\right)\right)$. How can we compute the a_{n} and b_{n} from $f(t)$?

(c) Determine the power series around $x=0: \quad e^{7 x}=$ \square
(d) Determine the power series around $x=0: \frac{1}{1+x^{2}}=$

Problem 5. (3 points) A mass-spring system is described by the equation $y^{\prime \prime}+k y=\sum_{n=1}^{\infty} \frac{1}{n^{2}+7} \cos \left(\frac{n t}{4}\right)$. For which values of k does resonance occur?

Problem 6. (3 points) Find a minimum value for the radius of convergence of a power series solution to

$$
\left(x^{2}+1\right) y^{\prime \prime}=\frac{y}{x+1} \quad \text { at } x=2 .
$$

\square
Problem 7. (4 points) Derive a recursive description of the power series for $y(x)=\frac{1}{1-3 x+2 x^{2}}$.

