Example 142. Find the unique solution $u(x, y)$ to:

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \quad(\mathrm{PDE}) \tag{PDE}\\
& u(x, 0)=1 \\
& u(x, 2)=0 \\
& u(0, y)=0 \tag{BC}\\
& u(1, y)=0
\end{align*} \quad(\mathrm{BC})
$$

Solution. This is the special case of the previous example with $a=1, b=2$ and $f(x)=1$ for $x \in(0,1)$.
From Example 116, we know that $f(x)$ has the Fourier sine series

$$
f(x)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} \sin (n \pi x), \quad x \in(0,1)
$$

Hence,

$$
u(x, y)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} \frac{1}{1-e^{4 \pi n}} \sin (\pi n x)\left(e^{\pi n y}-e^{\pi n(4-y)}\right)
$$

Comment. The temperature at the center is $u\left(\frac{1}{2}, 1\right) \approx 0.0549$ (only the first term of the infinite sum suffices for this estimate; the first three terms suffice for
 9 digits of accuracy).

$$
\begin{align*}
& u_{x x}+u_{y y}=0(\mathrm{PDE}) \\
& u(x, 0)=0 \\
& u(x, 2)=3 \\
& u(0, y)=0(\mathrm{BC}) \tag{BC}\\
& u(1, y)=0
\end{align*}
$$

Example 143. Find the unique solution $u(x, y)$ to:

Example 144. Find the unique solution $u(x, y)$ to:

$$
\begin{array}{lr}
u_{x x}+u_{y y}=0 \\
u(x, 0)=2, \quad u(x, 2)=3 \\
u(0, y)=0, \quad u(1, y)=0
\end{array}
$$

Solution. Note that $u(x, y)$ is a combination of the solutions to the previous two examples!

$$
u(x, y)=\sum_{\substack{n=1 \\ n \text { odd }}}^{\infty} \frac{4}{\pi n} \frac{\sin (\pi n x)}{1-e^{4 \pi n}}\left[2\left(e^{\pi n y}-e^{-\pi n(y-4)}\right)+3\left(e^{\pi n(2-y)}-e^{\pi n(2+y)}\right)\right]
$$

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \tag{PDE}\\
& u(x, 0)=4 \sin (\pi x)-5 \sin (3 \pi x) \\
& u(x, 2)=0 \\
& u(0, y)=0 \tag{BC}\\
& u(3, y)=0
\end{align*}
$$

Solution.

- We look for solutions $u(x, y)=X(x) Y(y)$ (separation of variables).

Plugging into (PDE), we get $X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(y)$, and so $\frac{X^{\prime \prime}(x)}{X(x)}=-\frac{Y^{\prime \prime}(y)}{Y(y)}=$ const.
We thus have $X^{\prime \prime}-$ const $X=0$ and $Y^{\prime \prime}+$ const $Y=0$.

- From the last three (BC), we get $X(0)=0, X(3)=0, Y(2)=0$.
- So X solves $X^{\prime \prime}+\lambda X=0$ (we choose $\lambda=-$ const), $X(0)=0, X(3)=0$.

From earlier (or do it!), we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are $X(x)=\sin \left(\frac{1}{3} \pi n x\right)$ corresponding to $\lambda=\left(\frac{1}{3} \pi n\right)^{2}, n=1,2,3 \ldots$.

- On the other hand, Y solves $Y^{\prime \prime}-\lambda Y=0$, and hence $Y(y)=A e^{\sqrt{\lambda} y}+B e^{-\sqrt{\lambda} y}$.

The condition $Y(2)=0$ implies that $A e^{2 \sqrt{\lambda}}+B e^{-2 \sqrt{\lambda}}=0$ so that $B=-A e^{4 \sqrt{\lambda}}$.
Hence, $Y(y)=A\left(e^{\sqrt{\lambda} y}-e^{\sqrt{\lambda}(4-y)}\right)=A\left(e^{\frac{1}{3} \pi n y}-e^{\frac{1}{3} \pi n(4-y)}\right)$.

- Taken together, we have the solutions $u_{n}(x, y)=\sin \left(\frac{1}{3} \pi n x\right)\left(e^{\frac{1}{3} \pi n y}-e^{\frac{1}{3} \pi n(4-y)}\right)$ solving $(\mathrm{PDE})+(\mathrm{BC})$, with the exception of $u(x, 0)=4 \sin (\pi x)-5 \sin (3 \pi x)$.
- At $y=0, u_{n}(x, 0)=\sin \left(\frac{1}{3} \pi n x\right)\left(1-e^{\frac{4}{3} \pi n}\right)$.

In particular, $u_{3}(x, 0)=\sin (\pi x)\left(1-e^{4 \pi}\right)$ and $u_{9}(x, 0)=\sin (3 \pi x)\left(1-e^{12 \pi}\right)$.
Hence, $4 \sin (\pi x)-5 \sin (3 \pi x)=\frac{4}{1-e^{4 \pi}} u_{3}(x, 0)-\frac{5}{1-e^{12 \pi}} u_{9}(x, 0)$. Therefore our overall solution is

$$
\begin{aligned}
u(x, y) & =\frac{4}{1-e^{4 \pi}} u_{3}(x, y)-\frac{5}{1-e^{12 \pi}} u_{9}(x, y) \\
& =\frac{4}{1-e^{4 \pi}} \sin (\pi x)\left(e^{\pi y}-e^{\pi(4-y)}\right)-\frac{5}{1-e^{12 \pi}} \sin (3 \pi x)\left(e^{3 \pi y}-e^{3 \pi(4-y)}\right)
\end{aligned}
$$

Comment. Of course, in general, our inhomogeneous (BC) will be a function $f(x)$ that is not such an obvious combination of our special solutions $u_{n}(x, 0)$. In that case, we need to compute an appropriate Fourier expansion of $f(x)$ first (here, the Fourier sine series of $f(x)$).

