Example 141. Find the unique solution $u(x, y)$ to:

$$
\begin{align*}
& u_{x x}+u_{y y}=0 \quad(\mathrm{PDE}) \tag{PDE}\\
& u(x, 0)=f(x) \\
& u(x, b)=0 \\
& u(0, y)=0 \tag{BC}\\
& u(a, y)=0
\end{align*}
$$

Solution.

- We proceed as before and look for solutions $u(x, y)=X(x) Y(y)$ (separation of variables).

Plugging into (PDE), we get $X^{\prime \prime}(x) Y(y)+X(x) Y^{\prime \prime}(y)$, and so $\frac{X^{\prime \prime \prime}(x)}{X(x)}=-\frac{Y^{\prime \prime}(y)}{Y(y)}=$ const $=:-\lambda$.
We thus have $X^{\prime \prime}+\lambda X=0$ and $Y^{\prime \prime}-\lambda Y=0$.

- From the last three (BC), we get $X(0)=0, X(a)=0, Y(b)=0$.

We ignore the first (inhomogeneous) condition for now.

- So X solves $X^{\prime \prime}+\lambda X=0, X(0)=0, X(a)=0$.

From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are $X(x)=\sin \left(\frac{\pi n}{a} x\right)$ corresponding to $\lambda=\left(\frac{\pi n}{a}\right)^{2}, n=1,2,3 \ldots$.

- On the other hand, Y solves $Y^{\prime \prime}-\lambda Y=0$, and hence $Y(y)=A e^{\sqrt{\lambda} y}+B e^{-\sqrt{\lambda} y}$.

The condition $Y(b)=0$ implies that $A e^{\sqrt{\lambda} b}+B e^{-\sqrt{\lambda} b}=0$ so that $B=-A e^{2 \sqrt{\lambda} b}$.
Hence, $Y(y)=A\left(e^{\sqrt{\lambda} y}-e^{\sqrt{\lambda}(2 b-y)}\right)$.

- Taken together, we have the solutions $u_{n}(x, y)=\sin \left(\frac{\pi n}{a} x\right)\left(e^{\frac{\pi n}{a} y}-e^{\frac{\pi n}{a}(2 b-y)}\right)$ solving (PDE) $+(\mathrm{BC})$, with the exception of $u(x, 0)=f(x)$.
- We wish to combine these in such a way that $u(x, 0)=f(x)$ holds as well.

At $y=0, u_{n}(x, 0)=\sin \left(\frac{\pi n}{a} x\right)\left(1-e^{2 \pi n b / a}\right)$. All of these are $2 a$-periodic.
Hence, we extend $f(x)$, which is only given on $(0, a)$, to an odd $2 a$-periodic function (its Fourier sine series!). By making it odd, its Fourier series will only involve sine terms: $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{\pi n}{a} x\right)$. Note that

$$
b_{n}=\frac{1}{a} \int_{-a}^{a} f(x) \sin \left(\frac{n \pi x}{a}\right) \mathrm{d} x=\frac{2}{a} \int_{0}^{a} f(x) \sin \left(\frac{n \pi x}{a}\right) \mathrm{d} x
$$

where the first integral makes reference to the extension of $f(x)$ while the second integral only uses $f(x)$ on its original interval of definition.

Consequently, (PDE) $+(\mathrm{BC})$ is solved by

$$
u(x, y)=\sum_{n=1}^{\infty} \frac{b_{n}}{1-e^{2 \pi n b / a}} u_{n}(x, y)=\sum_{n=1}^{\infty} \frac{b_{n}}{1-e^{2 \pi n b / a}} \sin \left(\frac{\pi n}{a} x\right)\left(e^{\frac{\pi n}{a} y}-e^{\frac{\pi n}{a}(2 b-y)}\right),
$$

where

$$
b_{n}=\frac{2}{a} \int_{0}^{a} f(x) \sin \left(\frac{n \pi x}{a}\right) \mathrm{d} x .
$$

